

TRANSPORT PHENOMENA

DETAILED ANALYSIS O F

HEAT, MASS ^T MOMENTUM TRANSPORT

BASED ON THE FUNDAMENTAL

DIFFERENTIAL EQUATIONS

DERIVED FROM CONSERVATION

OF ENERGY, MASS T MOMFATUM

$SOWE$ OF MY books.

 ϵ

MECHANISMS O F TRANSPORT

f) MOLECULAR MOTION

MASS [→] DIFFUSION

 $HEAT$ CONPUCTION

MOMENTUM [→] DIFFUSION

2) "CONVECTION"

MOTION OF FLUID CARIES GUANTITY

a) MASS

b) ENELGY

c) MOMENTUM

MECHANISMS OF TRANSPORT

MULECULAR MOTION

 $MAGS = DIFFUS/DU\frac{\partial N_x}{\partial X}$

 $HFAT = COMVUCTION$

 $MOW=NTUM - OIFFUSIOW2XY$

2) CONVECTION

MOTION OF FLUID CALRIES $GUNANTITY$

 $384\times(1)$ MASS a) MASS $\sqrt{4455}$ ENERGY B)ENELGY 34 SW (U+1')

MOMENTUM C MOMBNTUM $\frac{1}{2}g\psi_{x}(\overline{\psi})$ MASS

 $\frac{\partial}{\partial x}$

FINISH DERIVATION AND WE HAUE MOMENTUM: THEFMAIL Systems THE EQUATION OF MOTION IN RECTANGULAR COORDINATES (x, y, z) In terms of τ : x-component $\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial p}{\partial x}$ $-\left(\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z}\right) + \rho g_x$ (4) y-component $\rho\left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z}\right) = -\frac{\partial p}{\partial y}$ $-\left(\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z}\right) + \rho g_y$ (B) z-component $\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial p}{\partial z}$ $-\left(\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z}\right) + \rho g_z$ (0) rms of velocity gradients for a Newtonian fluid with constant ρ and μ :

EVEN WITH ALL OF THIS WE CAN SOLUE ANY THINK

WENEED "CONSTITUTIVE"

FQUATIONS FOR THE FLUXES

 $J_{A} = -P \frac{\partial C}{\partial x}$

& FQUATIONS, NOT FLOM IST PRINCIPLES

THAT MATCH BEHAVIOR AS VERIFIED

 $BYEFEUMENTS$

THE MATHEMATICAL FORM OF

THE THREE DIFFERENT

(SETSOFIEQUATIONS I S SAME REFLECTING

THE SAME BASIC MECHANISMS

OF TRANSPORT.

HENCE! MATHEMATICAL PROCEDURES

WILL RE THE SAME

O R SIMILAR.

EXAMPLE SITUATIONS

(Received 4 December 1977 accepted 2 May 1978)

The basic equation in the shrinking core model for a spherical particle is derived from a differential mass balance for the fluid reactant diffusing through the ash layer

$$
\epsilon \frac{\partial c}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D_{\text{eff}} \frac{\partial c}{\partial r} - r^2 v c \right) \quad r_c < r < R \tag{1}
$$

$$
ln[67]=
$$
 eqs = {
$$
D[Ab[r, t], t]
$$
 =
$$
\frac{\alpha_1}{r^2}D[r^2D[Ab[r, t], r], r] - \frac{k_{on}}{\epsilon}Ab[r, t]Ag[r, t] + k_{off}B[r, t],
$$

\n
$$
D[Ac[r, t], t] = \frac{\alpha_2}{r^2}D[r^2D[Ac[r, t], r], r],
$$

\n
$$
D[B[r, t], t] = \frac{k_{on}}{\epsilon}Ab[r, t]Ag[r, t] - k_{off}B[r, t] - k_{death}B[r, t],
$$

\n
$$
D[Ag[r, t], t] = r_s - \frac{k_{on}}{\epsilon}Ab[r, t]Ag[r, t] + k_{off}B[r, t] - k_{off}B[r, t] \}
$$

\n
$$
ln[71]=
$$
sol = NDSolve[(eqs, inits, bcs], {ab, ac, B, Ag}, {r, r0, R}, {t, 0, t}, Masses \rightarrow 50000]

• Flow of oil in sandstone

- Governing equation

$$
\frac{\partial P}{\partial t} - K_e \frac{\partial^2 P}{\partial x^2} = 0
$$

- P is the local pressure causing flow
- K_e is an effective hydraulic
"conductivity" the response of fluid flow to the change in pressure

- Interstitial lymph fluid flow
	- Governing equation

$$
\frac{1}{(2\mu+\lambda)}\frac{\partial P^*}{\partial t} - K\frac{\partial^2 P^*}{\partial x^2} + \beta P^* = 0
$$

Flow in microfluidic devices

- When things shrink, qualitative differences occur.
- For example, a miniature propeller would not pump fluid!

TABLE 3.4

(Continued)

Spherical coordinates

 $\emph{r}\emph{direction}$

$$
\rho \left[\frac{\partial v}{\partial t} + v_r \frac{\partial v_r}{\partial t} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v}{\partial \phi} - \frac{v_\theta^2 + v_\phi^2}{r} \right] = -\frac{\partial p}{\partial r} + \rho g_r
$$

\n
$$
\frac{\partial \rho}{\partial t} \left(\frac{\partial v}{\partial t} + v_r \frac{\partial v_r}{\partial t} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_\phi}{r \sin \theta} \frac{\partial v}{\partial \phi} \left(\sin \theta \frac{\partial v_r}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 v_r}{\partial \phi^2} - 2 \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} - \frac{2}{r^2} v_\theta \cot \theta - \frac{2}{r^2 \sin^2 \theta} \frac{\partial v_\phi}{\partial \phi} \right]
$$

\n(3.3.28a)

 θ direction

 \bigwedge

$$
\rho \left(\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi} + \frac{v_{\theta} v_{r}}{r} - \frac{v_{\phi}^{2} \cot \theta}{r} \right) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\theta}}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_{\theta}}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\theta}}{\partial \phi^{2}} + \frac{2}{r^{2}} \frac{\partial v_{r}}{\partial \theta} - \frac{v_{\theta}}{r^{2} \sin^{2} \theta} - \frac{2 \cos \theta}{r^{2} \sin^{2} \theta} \frac{\partial v_{\phi}}{\partial \phi} \right] + \rho g_{\theta}
$$
\n(3.3.28b)

$$
\phi \text{ direction}
$$
\n
$$
\rho \left(\frac{\partial v_{\phi}}{\partial t} + v_{r} \frac{\partial v_{\phi}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\phi}}{\partial \theta} + \frac{v_{\phi}}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi} + \frac{v_{\phi} v_{r}}{r} + \frac{v_{\theta} v_{\phi}}{r} \cot \theta \right) = -\frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} + \mu \left[\frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial v_{\phi}}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial v_{\phi}}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} v_{\phi}}{\partial \phi^{2}} + \frac{2}{r^{2} \sin \theta} \frac{\partial v_{r}}{\partial \phi} - \frac{v_{\phi}}{r^{2} \sin^{2} \theta} + \frac{2 \cos \theta}{r^{2} \sin^{2} \theta} \frac{\partial v_{\theta}}{\partial \phi} \right] + \rho g_{\phi}
$$
\n(3.3.28c)

$RTICLECLEAM$ $ECHANDISMS$

T.C. Carvalho et al. / International Journal of Pharmaceutics 406 (2011) 1-10

Diffusion

Inversely

related to d

 $3\pi \cdot \eta$

Dif

Ra

 \Rightarrow

 $\overline{2}$

Two layer laminar flow

- * It is easy to solve a laminar flow with two different liquids flowing.
- * Suppose one of them is much more viscous than the other.
- * We normally expect that the pressure drop increases as the flowrate increases.....

Increasing flow of water **decreases** pressure drop

