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1. Blood flow and forces on the human aorta. (30 points)

If you look for an image of the human aorta, you will find something like the figure on the right?
(marked “c”). However, for this problem, let’s start with the flow geometry on the right.

C

a. Give a relation for V3 (the velocity in the descending aorta) in terms of V4, V2, and the areas.

b. Find the net force on this aorta in terms of the areas, velocities and pressures.

c. In a study of children and young adults Poutanen et al (2003) found that for the smallest
children (with a body surface area of 0.5 to 0.75 m2), the value of A1 was 2.3 cm2 and the
value of Az was 0.49 cm2. The average value of V4 was 7.9 cm/s and the average value of
Vawas 8.3 cm/s. If Ao = Ai-As, what is the value of V5?

d. If the total length of the aorta is 10 cm (5 cm for the curve and 5 cm for the straight tail) ,
the viscosity of blood is 0.03 g/(cm-s) and the density of blood is 1.06 g/cm3, give an
approximate value of P1-Ps.

e. Using your answer from d, explain the contributions of shear stresses to the total (net) force
and the contributions due to other forces to the total net force of part b.

f. Is there any natural advantage to a specific value of 6, as compared to an arbitrary value?

problem 1 continues....

1 This image is from a computer modeling paper, but other cartoons are similar.



g. Now consider this slightly different flow configuration (that Nature did not choose!), what is
the force necessary to hold this in place?




2. Rising spherical “drop” (or bubble) at low Reynolds number. (40 points)

We have examined the case of a solid sphere falling
slowly in a otherwise quiescent liquid with viscosity,
u and density, p, that is of infinite extent. For this
problem we consider a modification where the drop
is now another fluid that has a density, pp (< p) so

]\ that the drop will rise. The viscosity of the drop is
Hp-

The terminal (rise) velocity, Vs, is
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where g is the gravitation coefficient, 980 cm/s2.

a.

If a single drop of soybean oil, pp = 0.917 g/cm3 and pp = 0.5 g/cm-s with a radius of 0.7
mm is present in a vat of pure water, y= 0.01 g/cm-s and p = 1 g/cm3, what is the Reynolds
number?

Find a simplification of this formula that would give a reasonably accurate answer if the
soybean oil was replaced by a much more viscous oil, say “road tar”.

Find a simplification of this formula that would give an accurate answer if the soybean oil
was replaced by an air bubble?

What is the drag force on the drop or bubble that is contained in the equation above?

In the limit of Re->0, what components of the Navier-Stokes equations would be needed to
solve for this flow field?

What boundary conditions are needed on the surface of the bubble or drop to solve for this
flow field.

If we had solved for the flow field we would have found that outside the drop or bubble,

Ve (ry,8) = UCos[B] |1-
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e. If L = 3R, estimate the change in Vs compared to, say, L > 30 R.
f. Explain what is happening.



3. Several short answer problems. (30 points)

a. Viscosity of a suspension of “liquid” spheres in a second liquid.

The formula for the suspension viscosity, us, of one liquid, up dispersed in a second
continuous liquid, y is

5
Bs = 14¢p — 220

u U+ pp , Where ¢ is the volume fraction of particles.

Use this in a parallel plate (or any convenient) geometry to explain why Professor McCready
recommended adding the flour to the (already mixed up) eggs and mixing, before adding a
large quantity of milk when preparing the batter of a German pancake.

b. Heart catheterization in small children.

With reference to the diagram:

Suppose that it is necessary to simultaneously feed two catheter assemblies (i.e. long wires
with probes on the ends) up the right branch of the (how Abdominal aorta) and around the “U”
towards the heart (i.e., location 1).

If each catheter has a diameter, Dc, (which is less than 1/5 of D3 = Sqrt[4As/mt] or D1 = Sqrt[4A1/
1)), estimate the increase in pressure drop, Ap/L in the right branch (Ds) as compared to the left

branch (D) if the velocities are the same as in problem 1.



c. Exhaling tobacco smoke.

For various reasons, smoking is much less prevalent in movies today as are opportunities to
even see someone smoking in public in the US. However, if you watch “old movies”, in
particular “Film Noir” from the 1940’s, 50’s, etc. most of the main characters are constantly
huffing and puffing.

An observation that can be made is that even when the actors are “serious” and inhale deeply,
they still exhale a lot of smoke!

It is known that cigarette smoke has a average radius of 10-5 cm. The smallest lung passages
have a radius of ~0.2 mm. A standard breath might take 2 sec to fill the lungs and 1.5 s to
exhale.

Briefly explain why approximately 1/2 of the smoke comes back out and why the particle size
of the exiting smoke is about the same as the entering smoke.

Some useful information could be: (note that n is the air viscosity the same as y = 0.00018 g/
cm-s ). The Boltzmann constant, k, in convenient units is 1.38 X 10-16 g cm2/(s2 K)

2 T.C. Carvalho et al. / International journal of Pharmaceutics 406 (2011) 1-10
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Fig. 2. The influence of particle size on deposition. d: particle diameter; Stk: Stokes
number; p,: particle density; V: air velocity; »: air viscosity; R: airway radius; Vi:
terminal settling velocity; p,: air density; g: gravitational acceleration; Dif: diffu-
sion coefficient; k: Boltzmann's constant; T: absolute temperature; d,.: aerodynamic
diameter; po: unity density.

Diffusion

B, mass, m, and velocity, v, according to Eq. (1) (Gonda, 2004):

Fig. 1. Schematic diagram representing particle deposition in the lungs according S=B-m-v (1)

to different mechanisms related to particle size: inertial impaction, sedimentation . . , R .
and diffusion. The diagram presents the smaller particles depositing in the lower The dimensionless Stokes’ number, Stk, more SPeClﬁca“y describes

airways as opposed to the larger airways. The Gl tract is omitted in this diagram. the Pr 0bability Qf Pamde d?POSiFion in the ailways Vi§l impaqiqn.
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Surface Tension pressure jump across a curved interface:
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where m is the total mass of the system. Combining Equations (4.3.5) and (4.3.7)
yields the following relationship:

c')/pvdV

VT + /Vp(n'v)dS = —/pna’S + /n-fds + mg. (4.3.8)
= K 5 S
Equation (4.3.8) is the integral form of the equation of conservation of linear

momentum. It is a vector equation and can be resolved into components in each of
the three orthoeonal axes of Am ANMranF Ao cmmedt o s en e Lt e
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Figure 3-1. Friction factor as a function of Reynolds numbe for
pressible Newtonian fluids. i



TABLE 3.1

The Conservation of Mass (Continuity Equation)
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TABLE 3.2
Conservation of Linear Momentum

Rectangular coordinates

X component
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TABLE 3.2

(Continued)

6 component
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TABLE 3.3

Shear-Stress Tensor for an Incompressible Newtonian Fluid

Rectangular coordinates
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Cylindrical coordinates
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TABLE 3.4

Navier-Stokes Equation for an Incompressible Fluid

Rectangular coordinates
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TABLE 3.4
(Continued)

Spherical coordinates

r direction
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Surface Tension pressure jump across a curved interface:
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