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1. Coagulation caused by a restriction in a blood vessel? (65 points)

In a recent publication, Rukhlenko et al. (2015) claim that increased wall shear stress at the
walls of an artery, such that can occur near a stenosis (i.e., a local reduction in cross section
area, probably from the build up of plaque) could change the permeability of the vessel wall to
“procoagulants” which in the extreme can lead to coagulation within the blood vessel. This
mechanism, where such clotting factors would normally be permeating out of the vessel — but
do not —, has been observed at shear rates as low as 1000/s. This value contrasts a more
widely recognized mechanism for clot formation, “platelet aggregation, which does not occur
until much higher shear rates, ~5400/s.

We would like to examine this claim of reduced permeability leading to clotting and see if we
can conclude anything based on our current understanding of fluid mechanics.

Let’s start with what we know well.

Consider blood flow as fully-developed laminar flow of a Newtonian fluid in a circular tube of
radius, R. It has a volumetric flow, Q.

a. Write down the relevant terms of the Navier-Stokes equations that will be solved to
describe a fully-developed flow.

Write down the boundary conditions needed to solve for the flow field.

Solve for the velocity field and sketch the profile.

Find an expression that relates the pressure gradient and the volumetric flow rate.
Find an expression for the shear stress everywhere in the blood vessel.
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Now let’s examine a real coronary artery. The vessel has a diameter of 0.4 cm. The average
velocity of the blood in the artery when the phase of the heart is at its maximum is 20 cm/s.
Use a viscosity value of y = 0.035 g/(cm-s) for blood.

f.  What is the maximum value of the shear stress and where does it occur?

g. The shear rate is dvz/dr. What the maximum value of the shear rate?

h. For these flow conditions, what value of radius would give a shear rate of 5000/s? (i.e.,
within the range of causing platelet aggregation?

i. For these conditions, what value of radius would cause a shear rate of 1000/s, (alleged to
be associated with loss of permeability?)

j- The time-averaged velocity of blood is only 7 cm/s. Does this change your assessment of
the likelihood that lowered vessel permeability is a significant clotting risk?




2. Examination of coronary artery by catheterization. (35 points)

Suppose that it is determined that it is necessary to examine various points around the heart
by catheterization. We would like to quantify the increased stress and shear rate associated
with this procedure.

The radius of the artery is R and the radius of the catheter (a solid wire for all intents) is AR. So
blood flow is now confined to the annular region between AR and R.

a. Revisit problem 1a, and write the boundary conditions and non-zero Navier-Stokes terms
that are necessary to solve the flow in the annular region around the catheter? Note that
the catheter could be moving at velocity V. that could be positive or negative.

The solution for the velocity profile that you would seek is:

4uv. log(;j) + dpdz 2 log(d) + dpdz R? (A2 (—log(r)) + log(r) + A2 log(R) — log(A R))
4 plog(d)
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Note that “log” means natural log.

You realize that with enough time, you could continue and get an average velocity, a shear
stress profile and find out how much the catheter restricts the flow. You don’t have this much
time!

c. Find a simplifying approximation to get the increased pressure drop as a function of the
diameter of catheter for the case where V. =0.

d. Under what conditions is your solution valid?
Use your new solution for the final part....

e. Suppose we are examining the same artery as in problem 1 with an average velocity of 20
cm/s. If the catheter has a diameter of 1mm, by what factor does the pressure gradient have
to increase to keep the blood flow the same as would be occurring in the absence of the
catheter?



3. Forces on pipes and fittings (40 points)

a. For “laminar” flow of Newtonian fluid in a circular pipe, find an algebraic expression
for F2, the force on the outside of the pipe necessary to keep the tube in place.

b. Explain how the force varies with Reynolds number

c. Water is flowing through the pipe and fitting shown in the figure below. Find a good
estimate for Fx and Fy if:

P+ =200,000 N/m2, = 200,000 kg /(m-s)
Vi=3 m/s

A1=0.0000785 m?2 (diameter = 1 cm)
A> = 0.0000636 m2 (diameter = 0.9 cm)
Li=2m,

Lo ~=0

u=0.001 kg/(m-s)

p=1000 kg/m3




4. Entrance effects in arterial flow. (40 points)

Recall the “aorta” from test #2.
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We would like to know if for this very long artery, ~25 cm, if entrance effects contribute
significantly to the pressure drop.

We will consider older children for this calculation. Use the approximation that the aorta
has a constant radius of 1.5 cm and blood velocity of 20 cm/s.

For this (more or less) steady laminar flow, it has been suggested that boundary-layer
results could provide some insight that could answer this question.
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a. Find an estimate for the distance necessary for the flow to become fully-developed.

b. Compare the value of the wall shear stress at the entrance to what a steady state laminar
flow would achieve sufficiently far downstream. Is the shear stress in the entrance region
higher?

c. Does the answer to part b confirm the the pressure drop will be higher for developing flows
compared to full-developed flows?



5. Production of pharmaceuticals by lyophilization (a.k.a. freeze-drying) (30 points)

While “freeze drying” was formerly a “fad” in the industry to make, (before Keurig), e.g., instant
coffee, it continues to be critical to production of many antibiotics and other delicate
pharmaceutical compounds.

After the synthesis and separation steps are completed, it may be necessary to remove water,
but leave behind a “powder” that can be readily re-wetted, (perhaps with a sterile saline +
buffer if the drug is to be administered intravenously). The pharmaceutical compound is
sensitive to heat so that a normal drying process cannot be performed.

Instead, the water-drug mixture is frozen and the ice is sublimed leaving a dry powder with a
useful “shelf-life”. You can probably figure out that this is not by doing the synthesis in a very
northern climate, putting the suspension in a bucket outside and waiting for the ice to
evaporate!

Normally the suspension is sprayed, through a nozzle to make drops of a prescribed size, into
a chamber that is at a pressure significantly below 1 ATM and (to the extent that T is well-
defined) is sufficiently cold to effect rapid ice formation.

Freezing and sublimation is completed while the drops are falling onto a collection surface. It
is this last step that you need to design.

Suppose that the rate of water removal is such that for drops/particles in the size range that
will be ideal, takes 5 s. You need to prescribe a drop size that makes particles that will fall
through the 1 m distance in at least a little longer than 5 s.

You can assume that gravity acceleration is 980 cm/s2. The density of the pharmaceutical and
the density of water are both 1 g/cms3. The density of the gas in the freezing chamber is only
0.1 ATM or about 0.00013 g/cm?3 (@ -40C). Interestingly, the pressure does not significantly
affect the gas viscosity, but at this temperature you can use a value of 0.00015 g/(cm-s).

A. If the amount of water removed is such that the drop diameter changes only by a few
percent as it dries, suggest a drop diameter that will work for this process.
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f= Re (laminar flow pipe)

f = 0.079 Re™25 (turbulent, pipe)

|4
Re = Tp (rectangular channel)

6
f= Re (rectangular channel)

Dy Vop :
Re, = p (particle Reynolds Number)

8
Cp = ﬁ (drag coefficient — drag force relation)

Momentum equations for single flow inlet in + x direction.

—p{V.V.)A +p(V,V,)A, cos(8) = BA — P,A, cos(0)+F.,
+p(V,V,) A, sin(0) = —P,A, sin(6) + F,

Vi P, 45 Py
7+gh2+; - 7+gh1+? =6W,— I,

1 2LfV?
IU=Z§KV22 or —



TABLE 5-1
 osses IN FITTINGS AND VALVES FOR TURBULENT FLOW®
0

torrrid : Velocity heads lost, Ky

Fitting or valve | '
W fcd 7T 0 —
90° elbow, standard » - (1);5
900 e]bow, Square 0:04
Coupling sl | -
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Surface Tension pressure jump across a curved interface:

2n R
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Figure 4-1. Drag coefficient as a funct
flow past a sphere. (Reproduced from H
Theory, 6th ed., McGraw-Hill Book Com:
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Figure 3-1. Friction factor as a function of Reynolds numbe
pressible Newtonian fluids.
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TABLE 3.1

The Conservation of Mass (Continuity Equation)

Rectangular coordinates (x,y,2) ap apv, vy dpv,
— = - -+ — 4+ —
at ax ay az

Cylindrical coordinates (7, 6, 2) ap

( 1alprv,) 1d(pve) "’(PV:))
— — -+ +

at rooar ro a6 a3

Spherical coordinates (r, 6, ¢) ap ( 1 a(priv,) 1 d(pvgsin ) 1 alpvg)
— == + + —
at o or rsin @ a0 rsin@  ab

)
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TABLE 3.2
Conservation of Linear Momentum

Rectangular coordinates

X component

v, My o v ap [oree Ty 0T
+v,—+v,—+v,—/ | =pg, —— + - —_ 3.3.18a
Pl ot T ax Y ay “az PEx ™ x ax ay az ( )
y component
[av,, av., av,, av,, ) M s T AT on,
¥ » b ¥ ap xy by z )
Pl vt v,—tv,—|=pg, ——+ | - - (3.3.18b)
| dx dy dz dy dx dy dz
2 component
[dv. av. av, av ap My Oyy 0T
z < i k4 4 < 2z .
pl— + Ve + VT + sz = pg; — - + - - + — (33L18C)
L ot ox f')' az ()4 ox ady a3
Cylindrical coordinates
r component
- 2 . . .
av av Vg v, v~ av ap 1 drr,,) 1 or, T a7
pl=+v—L+2 Ly g, - — | — B T (3.3.19a)
| at ar r 9 r Yz ar ro o r 9 r az
6 component
M- " " ” - - 2 . -
vy avg vgivg Vg ivg ap 1 d(r°Tg) 10759 729 .
Pl tvi Tt [ =pg ot [t~ — (3.3.19b)
| af ar r 9 az a8 - ar r o9 g
2 component
av L v a 1d(r7,.) 1 OTg, 0T
Y AC-RRAL UL JRVLAL 3 O AP [ LA : (3.3.19¢)
ot ar r o8 az N g r or r 8 az :
Spherical coordinates
r component
. . . . 2 2 - ay 2 . .
v, v,  vg v, Ve dv, Vgo T vy ap 1 a(r°r,,) 1 d(Te,sinB)
pl—7 tvv - +t—— T~ =pg - -t |3t -
at ar r 8 rsin @ ag r ar re  or rsin@ i)
1 1y Tep T Tee ‘
+ — — - == %0 (3.3.20a)
rsin@ ag r '
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TABLE 3.2

(Continued)

6 component

5
[(’avg Ng Vg AV Vg Vg Vg Vgcoth ] ap
_— Vv, — _—— - _— —_— | = _—
Pl ar “ar  r 0 rsin@ ap r r P& ~ 7
. 1 a(ri,e) . 1 a(gesin ) 1 37199 7,4  cot
- - . — - T
o rsin @ a6 rsin@ do r r ¢é

¢ component

VgVgCOt 6 1

av av, v OV, Y av V,Vg
p[ ¢ (AALJAL ¢ No YV

at ar r 0  rsin@ J r
|:L iﬁ(rl'r,d,) l ('H"gd, N 1 (’IT¢.¢

v - - . -
re or r a0 rsin@ dap

r }ngd’_rsineg

Trp  2coth
+— g

r r

(3.3.20b)

(3.3.20¢)
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TABLE 3.3

Shear-Stress Tensor for an Incompressible Newtonian Fluid

Rectangular coordinates

+ H\").
ax
av.

+ -
ax

v X

T.\"\’ = 2""’ (:'x

Tyx = Tyx = M(
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(3.3.22a)

(3.3.22Db)



TABLE 3.1

The Conservation of Mass (Continuity Equation)

Rectangular coordinates (x,y,2) ap apv, vy dpv,
— = - -+ — 4+ —
at ax ay az

Cylindrical coordinates (7, 6, 2) ap

( 1alprv,) 1d(pve) "’(PV:))
— — -+ +

at rooar ro a6 a3

Spherical coordinates (r, 6, ¢) ap ( 1 a(priv,) 1 d(pvgsin ) 1 alpvg)
— == + + —
at o or rsin @ a0 rsin@  ab

)
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Cylindrical coordinates

LW,
T = 20—
rr l‘L (,)r

r oo r
_ _ Vg 1 dv,
)
, av,
Tox = <M %

Spherical coordinates

L,
Ty = 24—
rr M (')r

df Vg 1 av,
=T =M\ ) T T
d Ve + 1 ov,
Tod = Toy = r—| — —
ré or = M\ "\ 7 rsin @ dd
1av, v,
Tog = 2| —— + —
o “( r of r )
(sin() r'i( Vg >+ 1 5"’9)
T — T — — - - '_
o ¢0 = H r o9\ sinf rsin @ do

1 V¢ v, vgcoth )
Tod = 2 - +— +
¢ ”( rsin@ dg r r

(3.3.23a)

(3.3.23b)

(3.3.23¢)

(3.3.23d)

(3.3.23¢)

(3.3.23f)

(3.3.24d)

(3.3.24e)

(3.3.24f)
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TABLE 3.4

Navier-Stokes Equation for an Incompressible Fluid

Rectangular coordinates

x direction
. ” " ” . -2 a2 2
av, av, av av ) av av,  dv,
pl—=+ v, =ty —+v,— = —.—p+,U« — +—5 +—3| + pg (3.3.26a)
at T odx ay 4 ax ax= ay” az"
y direction
” " ” " -2 -2 -2
av,, av.,, av, av.,, o a7V, vy, vy,
y y y ) 14 y Y y
Pl twn—tvw—t+tv—|=——+pu—+—=+t—=|+rz (3.3.26b)
at ), <y az ay ax= ay" az=
z direction
- - - - . 2 -2 -2
av, av, av, (IV: ap (I'V: av, (ﬁ’vz
pl— + v,— + Vy— +v,— ) =——+ I 5 + 5> +—= | + PL, (33260)
at ax ay “az a3 ax= dy= az" N
Cylindrical coordinates
rdirection
v v Vg OV vo* v ap g (1 drv,) 1 o*v 2 av Py
av av g OV L) , ¢ oV = Vg TV 29—
pl—=+v—t——-—tv,—|=——tp A" )t 3= S5 |t P& (3.3.27a)
it i r a6 r az r ar\r ar 08" r= 08 az-
0 direction
” ” " ” ” - \ "2 - a2
avg vg Vg dvg V,Vg avg 1 a1 d(rvg) 1 d°vg 2 av d“vg .
pl—+ v, — =+ —+v,— =——,—p+ —|-——)t3 3 t3 5+t | tre (3.327b)
at ar r 00 r * Az r a0 ar\r or o8- ~ 00 az-
z direction
” ” ” ” . ” -2 22
av, av,  vg dv, av, ap 1 af dvg 1 dv, v, _
P\ — +vy—+——+ V, = —'—+/.L—,— r— |+t —7 +— +pg, (332C)
ot or r 00 az az r or ar = 09 az- ©
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Table 3.4 (continued)

TABLE 3.4
(Continued)
Spherical coordinates
r direction
4 (f 4 v (f v + v3 p
av av, Vg av 6 v 5+ Vg ‘
p’_r+vr’_r+_6’_r+ .¢ ’_f_ —| =t p&r
ot at r o9 rsin @ do r ar
yJ -
1 a av 1 af . av 1 av Vv 2 avg 2 2 vy
+M[(—’,— P )+ 5= sinb— ) + 53— 25— 3 — FVecoth — 55—
r= or ar r~sinf a6 a6 resin“@ dag* r- - ol r- r-sin“@ d¢

(3.3.28a)

0 direction

s
av av Vg OV Vg o av, VoV vy cot f 10 14 av
p(_oﬂ._u_e_u ¢ Mo  Vevr Va )=___P+ [__,.3_

at ar r a8  rsinf dd r r r a6 re dar ir
1 af . avg) 1 dvg 2 v, Ve 2cosh ﬂv,;,J o
—| sin— | + 5———>5+ 55— — — — | + pg 3.3.28b
r*sinf ('JO( a6 r2sin*@ r'od)l P 0 sin*0  r’sin’@ b P ( )
& direction
Vg Vg vg Vg Vg Vg VeV, VgV ) 1 ap 1 4 ( N (J\’¢>
+ v b —_——F —— + + coth | = — — + p|l5—|m—
p( at Ve ar r 06 rsin @ dd r r €0 rsinf dd ® 7~ ar ar
” nd
a l‘V¢ ) 1 (’U\"(b 2 [}\rr V(!’ 2cosf l-’jve :| ,
—{ sinfd— + — - + 3.3.28¢)
r*sind «"9( a6 Psin’8 ad*  sinf dd  rsin’@  rsin’@ b PEs ( o
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