Lecture name/date	Topic 1	Topic 2	Topic 3	Topic 4	Flex	Notes	Trivia/Tidbits
		definition of				Thermo tells us what can happen.	
	ChEg	transport	Many example			Transport tells us how fast it will	"Greates of all
8/22, lecture 1	curriculum	phenomena	scenarios!			happen!	equations"
		Blood flow from a					
		fluid mechanics					
		standpoint as a					
	Most important	motivating					
	fundamental	example for the					
	principle in	course. Also				Cooperative binding gives the "S"	
	course:	lungs, intestines,				shaped curve and shows why	Informs and
	Momentum	joints and brain				hemoglobin can be saturated at	abrogates
8_24, lecture 2	conservation	barrier	O2 solubility in blood			partial pressures of ~90 Torr	"MONA"
							Should the
							"docs" call an
	A comparison					We saw that the first law of	engineer to do
	of mass,	Brain blood flow,		Formulation of "shell		thermodynamics won't be enough	a calculation
	momentum and	Circle of Willis	Power to pump a fluid	balance" to conserve		to explain fluid flow. We need	before they do
8_29_17	heat transfer	(redundancy)	from 1st Law	mass		conservation of momentum.	surgery?
							Equation is
							always written
						Note that Momentum is a vector	such that left
						quantity and so we get 3 equations	side is
						if we consider only the scalar	acceleration
	Derivation of		Formulation of	Derivation of		components of the vectors" Elow"	right side is
	differential	Some utility of	differential momentum	differential		terms are momentum/volume*	summation of
8 31 17	mass balance	mass halance	halance	momentum equation		volumetric flow across a face	forces
0_01_17		Body forces:	bulunce				101003.
		Gravity: Surface				"Cauchy Momentum Equation" is	
	Continued	forces: Pressure				the lingo for the complete general	Stress strain
	derivation of	and shear stress				differential momentum equations	equations for
	momentum	Surface forces		Still too many	Need	Use of stress-strain relations for	Newtonian
	equation: The	require a stress	Stress tensor is	unknowns for the	constitutive	Newtonian Fluid Leads to Navier-	Fluid are given
9 5 17	forces	tensor	symmetric!	number of equations.	equations:	Stokes equations	in tables.

					Gravity driven		
	Extensive	Solution of the			flow down a flat		
	review of	first problems.			plate. No shear		
	momentum/Na	Flow between			stress boundary		Pressure
	vier-Stokes	parallel plates	Discussion of boundary	Pressure driven flow	condition at the		decreases
	equations	caused by plate	conditions: no slip,	between parallel	liquid-gas	Force on plate (Shear stresses),	linearly in the
9_7_17	derivation	moving	stress match.	plates	interface.	Average flow rate	flow direction
		Consideration of					
	Recap of basic	flow in a lung	Fluid statics, if no flow,				
	problems:	passage with	just a relation between				
	Moving surface,	liquid on wall and	pressure and the change		Gravity driven		
	gravity driven,	air in the middle	in the depth location of	How to analyze a	flow in a circular		
9_12_17	pressure driven	of the tube.	the fluid.	manometer	tube		
							Transition to
							turbulence
							occurs at
							about
							Re=2000-2500
							for circular
							nine flow
	Review of		Limit of this flow as	Transition to		Use friction factor Reynolds	This is NOT a
	manameter and		curvatura bacomas	turbulant flow		number plots to get prossure drop in	
	gravity driven	Flow botwoon	cuivature becomes	definition of friction		nine flow Laminar and turbulant	transtion
0 14 17	gravity univer	Flow between	small: Couette now	feater		pipe now. Laminar and turbulent	
9_14_17	TIOW	rotating cylinders	between parallel plates.	factor		regions have very different behavior	criterion!
						Nomentum transfer is much faster	
		Constitutive				In turbulent flow because velocity	
	Iransition to	relation for				fluctuations, "eddies" convect	"momentum
	turbulence and	Bingham plastic				momentum. In laminar flow	transfer" is in
	turbulent flow	and some	Falling film flow for			transport of momentum is only by	direction
9_19_17	overview	observations	Bingham plastic			diffusion	normal to flow
		Constitutive					
		equation for					
		blood flow.					
		Shear thinning					
	NonNewtonian	and Newtonian at	Blood flow, blood vessel				
9_21_17	fluid behavior	high shear rate	branching				
				integrate with BCs to	Get stress and		
9_26_17	Test 1 review	Set up picture	choose terms to include	get a velocity profile	average velocity		

	Some						
	"Allometric"						
	plots as a set-	Concept of					
	up for use of	optimization as a					
	dimensional	trade-off	Optimization principle				
	reasoning to	between capital	gives "Murray's Law"				
	interpret flow	and operating	(as does constant wall				
10_5_17	behavior	costs.	shear stress.)				
			"Hydraulic diameter"				
		Exact solution for	can give good	d_h = 4*cross section			
	Non-circular	rectangular	engineering results for	area/(perimeter that			
	cross section:	channel exists	non-circular cross	is in contact with			
10_10_17	What to do?	and we can use it	section channels.	flow)			
		Re is small so					
		rational		Flow of small particles			
	Flow of small	simplification of	Scaling and	in your lungs; You			Your defenses
	particles as in	N-S equations	nondimensionalization	have defenses against		Many examples of low Re flows are	make aerosol
	dust carried in	should be	suggests neglecting	possible lung damage		given. Chemical engineers "own"	drug delivery
10_12_17	air	possible	inertia is valid	from small particles		this branch of fluid mechanics.	challenging!
	Flow	Flow past a fixed					
	consequences	sphere at low	Drag on the sphere,	Diffusivity of small			
10_24_17	of no inertia	Reynolds number	Stoke's settling velocity	particles.			
					What if Re>>1?		
					Scaling suggests		
		Drag coeffient			that viscous		
		relation for all			terms are not		
		Revnolds	Suspension flows.		important.but if		
	More	numbers: Can get	viscosity increases with	Suspended drops or	so. we can't		
	discussion of	settling velocity	volume fraction of	bubbles also increase	enforce no-slip		
10 26 17	low Re flows	for any Re with it	particles in suspension	viscosity	condition.		
		, , , , , , , , , , , , , , , , , , , ,			Vector directions		
					are critical.		
					pressure terms		
					are evaluated at	All of the tangential forces and	
		1					I
		Some use of mass			"open" surfaces	unknown pressure forces within	
	Derivation of of	Some use of mass balance: If flow	Derivation of integrated	Discussion of how to	"open" surfaces within the flow	unknown pressure forces within system are lumped into the "Force"	
	Derivation of of	Some use of mass balance: If flow area changes or	Derivation of integrated form of momentum	Discussion of how to use the momentum	"open" surfaces within the flow where we know	unknown pressure forces within system are lumped into the "Force" term. This is usually what we solve	

	Use of					
	momentum	Simplified form of				
	equation for	integral balance	pipe flow, U bend, area			
	basic flow	that can be used	change, elbow with			
11_2_17	geometries.	for our problems	angle,			
				Example low Re		
	pipe flow w/			problems, rotating	Review of use of	
11_7_17 (test 2	friction factor	Hydraulic	Scaling that gave Re<<1	sphere, flow past	Momentum	
review)	Re relation	diameter	and Stoke's equations	sphere	balance equation	
		Use of first law to				
		solve fluid flow				
		problems:	Use of Bernoulli			
	Motivation for	Derivation of	equation for pipe			
	one more	Bernoulli	system flows, what to			
11_16_17	equation	equation ("cat z")	use for "losses".			
	Discussion of					
	how the heart			Blood flow through		
	pumps and how			heart valves. Relation		
11_21_17,	blood gets	Some points		between pressure	Stress on vessel	
Cardiology fluid	around your	about EKG and	Coronary arteries,	drop , flow rate and	walls and	
mechanics	body	catheterization	stenosis and stents	valve stenosis	aneurysm	
					dp/dy ~=0 so that	
					Bernoulli	
					equation for	
					inviscid flow will	
			Procedure with		give the pressure	
	High Re flows		nondimensionalization	This also eliminates	on the boundary	
	close to solid		of N-S equations by	the flow direction 2nd	layer. This	
	surfaces:		hypothesizing the need	derivative term and	pressure does	
	inertia and	Need to	for 2 length scales. This	requires that the	not change from	
	viscous forces	incorporate this	works and gives a	boundary layer	the top to the	
	are both	idea into scaling	second(much weaker)	thickness scales as	bottom of the BL	
11 28 17	important	of N-S equations	velocity scale)	1/Sart(Re)	because dp/dy=0.	

11 30 17	More discussion of Boundary-Layer flows	Self-similarity arises, thus we attempt to simplify the PDE with a similarity variable	Similarity occurs because there is no confining geometric length scale, but there is a specific relation between x and the top of the boundary layer	Use similarity variable to reduce PDE to ODE. Solve numerically		
12_5_17	Recap of boundary layer flows past plate and wedge	Developing flow in a pipe as a growing boundary layer.	Startup (transient) flow of a flat plate in an infinite domain. Again we expect self-similarity and again it works.			
12_7_17	How does your knee support such a large load with so low of a friction force	Hydrodynamic lubrication theory	"Slider" and "Squeeze film", Both can be analyzed with Reynolds equation	The reason that such a large load can be supported is that in both cases, a liquid is flowing within a very small gap. This causes a large pressure change within the joint.		