CBE 30357 9/7/17 TOPICS FOR TODAY 1) QUICK REVIEW OF DERIVATION OF MOMENTUM EQS 2) ... THEN TRANSFORMATION TO NAVIER-STOXES EQIS 3) USE OF THESE TO SOLUE PLOBLEMS 4) A LITTLE MORE AGUT VISCOSITY

REVIEW: DERIVATION ... RATE OF CHANGE OF MOMENTUM IN C.V.

RATE OF MOMENTUM FLOW INTO C.V.

+ 2 FORCES

SURFACE FORCES

REVIEW

Conservation of Linear Momentum

REVIEW

Rectangular coordinates

x component

$$\rho \left[\frac{\partial \mathbf{v}_x}{\partial t} + \mathbf{v}_x \frac{\partial \mathbf{v}_x}{\partial x} + \mathbf{v}_y \frac{\partial \mathbf{v}_x}{\partial y} + \mathbf{v}_z \frac{\partial \mathbf{v}_x}{\partial z} \right] = \rho g_x - \frac{\partial p}{\partial x} + \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right]$$

y component

$$\rho \left[\frac{\partial \mathbf{v}_y}{\partial t} + \mathbf{v}_x \frac{\partial \mathbf{v}_y}{\partial x} + \mathbf{v}_y \frac{\partial \mathbf{v}_y}{\partial y} + \mathbf{v}_z \frac{\partial \mathbf{v}_y}{\partial z} \right] = \rho g_y - \frac{\partial p}{\partial y} + \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} \right]$$

z component

$$\rho \left[\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right] = \rho g_z - \frac{\partial p}{\partial z} + \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right]$$

$$CICAUCHY - MOMENTUM EQUATIONSII$$

$$THEARE GENERALLY APPLICABLE
BUT THERE ARE TOO MANY
UNKNOWOUS
NEED CONSTITUTIVE EQUATION
TO RELATE C'S TO VI
EG. $\partial x = P(\partial x, \partial v)$$$

Shear-Stress Tensor for an Incompressible Newtonian Fluid

Rectangular coordinates

$$\tau_{xx} = 2\mu \frac{\partial v_x}{\partial x} \tag{3.3.22a}$$

$$\tau_{yx} = \tau_{yx} = \mu \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)$$
(3.3.22b)

$$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right)$$
(3.3.22c)

$$\tau_{yy} = 2\mu \frac{\partial v_y}{\partial y} \tag{3.3.22d}$$

$$\tau_{zy} = \tau_{yz} = \mu \left(\frac{\partial v_y}{\partial z} + \frac{\partial v_z}{\partial y} \right)$$
(3.3.22e)

$$\tau_{zz} = 2\mu \frac{\partial v_z}{\partial z} \tag{3.3.22f}$$

TABLE 3.4

Navier–Stokes Equation for an Incompressible Fluid

Rectangular coordinates

$$x \, direction$$

$$\frac{\partial P}{\partial t} = \sum_{i=1}^{\infty} \sum_{j=1}^{2i} \sum_{i=1}^{2i} \sum_{j=1}^{2i} \sum$$

$$\rho\left(\frac{\partial \mathbf{v}_x}{\partial t} + \mathbf{v}_x\frac{\partial \mathbf{v}_x}{\partial x} + \mathbf{v}_y\frac{\partial \mathbf{v}_x}{\partial y} + \mathbf{v}_z\frac{\partial \mathbf{v}_x}{\partial z}\right) = -\frac{\partial p}{\partial x} + \mu\left[\frac{\partial^2 \mathbf{v}_x}{\partial x^2} + \frac{\partial^2 \mathbf{v}_x}{\partial y^2} + \frac{\partial^2 \mathbf{v}_x}{\partial z^2}\right] + \rho g_x$$

y direction

$$\rho\left(\frac{\partial \mathbf{v}_y}{\partial t} + \mathbf{v}_x\frac{\partial \mathbf{v}_y}{\partial x} + \mathbf{v}_y\frac{\partial \mathbf{v}_y}{\partial y} + \mathbf{v}_z\frac{\partial \mathbf{v}_y}{\partial z}\right) = -\frac{\partial p}{\partial y} + \mu\left[\frac{\partial^2 \mathbf{v}_y}{\partial x^2} + \frac{\partial^2 \mathbf{v}_y}{\partial y^2} + \frac{\partial^2 \mathbf{v}_y}{\partial z^2}\right] + \rho g_y$$

z direction

$$\rho\left(\frac{\partial \mathbf{v}_z}{\partial t} + \mathbf{v}_x \frac{\partial \mathbf{v}_z}{\partial x} + \mathbf{v}_y \frac{\partial \mathbf{v}_z}{\partial y} + \mathbf{v}_z \frac{\partial \mathbf{v}_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 \mathbf{v}_z}{\partial x^2} + \frac{\partial^2 \mathbf{v}_z}{\partial y^2} + \frac{\partial^2 \mathbf{v}_z}{\partial z^2}\right] + \rho g_z$$

TABLE 3.1

The Conservation of Mass (Continuity Equation)

Rectangular coordinates
$$(x, y, z)$$
 $\frac{\partial \rho}{\partial t} = -\left(\frac{\partial \rho v_x}{\partial x} + \frac{\partial \rho v_y}{\partial y} + \frac{\partial \rho v_z}{\partial z}\right)$

These equations can be used to solve almost any fluid flow problem if the fluid is Newtonian.

Our challenge is to learn to use them!

WE STARD WITH THE SIMPLEST PROBLEM: BOTTOM PLATEIS FIXED TOP PLATE MOVES ATU WHAT IS VX(y)? WHAT FORCE IS REQUIRED? NEWTONIAN FLUID, M

TABLE 3.1

TABLE 3.4

Navier-Stokes Equation for an Incompressible Fluid

Rectangular coordinates

x direction

y direction

z direction

WHICH STRESS COMPONENTS ARE IMPORTANT ??

Shear-Stress Tensor for an Incompressible Newtonian Fluid

Rectangular coordinates

$\tau_{xx} = 2\mu \frac{\partial V_x}{\partial x} \qquad 0$	(3.3.22a)
$\tau_{yx} = \tau_{yx} = \mu \left(\frac{\partial V_x}{\partial y} + \frac{\partial V_y}{\partial x} \right) \qquad $	(3.3.22b)
$\tau_{zx} = \tau_{xz} = \mu \left(\frac{\partial v_x}{\partial z} + \frac{\partial v_z}{\partial x} \right)^{-1}$	(3.3.22c)
$\tau_{yy} = 2\mu \frac{\partial v_y}{\partial y} = 0$	(3.3.22d)
$\tau_{zy} = \tau_{yz} = \mu \left(\frac{\frac{\partial V_y}{\partial z}}{\frac{\partial v_z}{\partial z}} + \frac{\frac{\partial v_z}{\partial y}}{\frac{\partial v_z}{\partial y}} \right)$	(3.3.22e)
$\tau_{zz} = 2\mu \frac{\partial v_z}{\partial z}$	(3.3.22f)
Vx(y)= 2 U = NOVIS	VISCOSITY
NOT A CUX = MUX = MU FUNCTION OFY	STRESS

If the question is: how much force will it take to push the plate at a given velocity ?

It is obvious, but what is the average velocity of the fluid?

 $\rho\left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial y_z}{\partial x^2} + y_y \frac{\partial y_z}{\partial y} + y_z \frac{\partial y_z}{\partial z}\right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 y_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2}\right] + \rho g_z$

A subtle and perhaps confusing argument will now be given!

We conclude that V_x does not change in x.

We conclude that $\frac{2}{3}$ does not change with y

Hence, the only way for these terms to be always equal is if they are equal to a constant.

AT WALLS, DIN MIDDLE

Boundary conditions:

- 1. Fluid sticks to solid surfaces $V_{x}(0) = 0$
- 2. Fluid sticks to another immiscible fluid $V_{\mathcal{F}}(h) = V_{\mathcal{F}}(h)$
- 3. The shear stress is continuous across the fluid-fluid interface

4. For liquid flowing next to quiescent air, the stress can be considered approximately 0.

FALLING

