$CBE30357$

AUGUST 31, 2017

DERIVATION OF DIFFERENTIAL MASS AND MOMENTUM EQUATIONS

THESE EQUATIONS PROVIDE A WAY TO SOLUE - ALL FLVIO FLOW PROBLEMS ON ANY LENGTH SCALE

WHILE THE STEPS OF THE DEQUATION ALE NOT ESSENTIAL TO THEIR USE, GOING THROUGH THESE IN DETAIL PROVIDES INSIGHT INTO THE PHYSICS ASSOCIATED WITH EACHTERM

THIS AIDS IN SOLUING PROBLEMS AND VNOER STANDING RESULTS...

What is relation between&P and velocity?

? USE MASS BAIANCEZ

42 Chapter 2: Conservation of Mass

PROGRESS. 11

To proceed we need a formalism that can describe mass, momentum and energy transport and can be adapted to all problems of interest.

This formalism is the set of partial differential equations that I showed before.

We will start by explaining where these come from.

Then, we will use them!

Mass conservation for a single component is the simplest equation, so we do it first.

WHAT IS RATE OF CHANGE OF MASS IN C. V. ?

ONLY $g = g(f)$..

HOW AROUT AN "INFLOW"?

Need a way to keep track of any flow situation

Thus we consider each face separately and allow 1 in flow and 1 out flow for each coordinate direction.

30357 8 31 17

SO FOR THE JUST THE X-DIRECTION:

MASS CONSELUATION:

CONTINUITY EQUATION

Now consider conservation of momentum.

The derivation and the resulting equation will be more complicated than mass because "forces" act on the fluid to change the momentum.

In addition, the forces and velocity are vectors.

BEFORE WE GET COMPLETELY BOGGED-DOWN IN THE DERIVATION, IT IS USEFUL TO NOTE!

1) WE WILL WRITE FINISHED FO

ACCELERATION = SUM OF

2) MANY INTERESTING FLOORS

SF: = O NO CHANGE IN TIME, NO

3) FORTINS CASE:

30357 8 31 17

TWO FORCES

BALANCE

Newton's second law may be most tangible for discrete solid objects (e.g. a billiard ball), but it also works for "fluid particles".

The conserved quality for our equation formalism will be momentum per volume:

THE REMAINING TERM MUST REPRESENT THE FORCES, SO WE FIRST WRITE 457

WE AGAIN WILL TAKE LIMIT AS $0 = 24484x4$

 $VOLUME$ BUT WE WRITE: LIM \triangle $XQ02 = 0 = dV$

 $(DON'TDIVIOERTH4OOV6H YET)$

THIS GIVES FOR OVE ENTIRE EQ.

$dV\left(\frac{2}{36}(8^{51})\right)=-dV\left(\frac{2}{37}V_8(8^{51})+\frac{2}{37}V_8(8^{51})\right)+\frac{2}{36}V_8(8^{51})$ $+5F$ VECTOR

$\vec{\triangledown}$ $\cdot (3\vec{v}\vec{v})$ SHORTHAND

$PINALLY$: $dV\left(\frac{dS}{dt}\right)+\overline{r}(s\overline{v})=\leq\overline{F}$

To use one of my favorite expressions, the left side: "is what it is!"

We now must turn our attention to the forces.

Forces:

1) Body Forces. E.g., Gravity $\overline{\mathsf{E}}, \overline{\mathsf{B}}$

2) Surface forces... Pressure and shear stress.

SURFACE FORCES NORMAL TO SURFACE

Conservation of Linear Momentum

Rectangular coordinates

x component

$$
\rho \left[\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right] = \rho g_x - \frac{\partial \rho}{\partial x} + \left[\frac{\partial \tau_{xx}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} \right]
$$

y component

$$
\rho \left[\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right] = \rho g_y - \frac{\partial \rho}{\partial y} + \left[\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \tau_{yy}}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} \right]
$$

\boldsymbol{z} component

$$
\rho \left[\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right] = \rho g_z - \frac{\partial p}{\partial z} + \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right]
$$

CI *C* AVALU W² – M *D* N *E* NT *U* M *E Q J* A *T O W S*