CBE 30357 9(21/17 TOPICS

1) LAMINAR + JURBULENF FLOW

2) QUICK LOOK AT EXAM FROM PRIDR YEAR

3) INTRODUCTION/DESCARIPTION OF NON-NEWTONIAN FLUID BEHAVIOR

4) FLOW OF BINGHAM PLASTIC DOWNAN INCLINED PLATE

5) BLOODFLOW

103. Repetition of Reynolds' dye experiment. Osborne Reynolds' celebrated 1883 investigation of stability of flow in a tube was documented by sketches rather than photography. However the original apparatus has survived at the University of Manchester. Using it a century later, N. H. Johannesen and C. Lowe have taken this sequence of photographs. In laminar flow a filament of colored water introduced at a bell-shaped entry extends undisturbed the whole length of the glass tube. Transition is seen in the second of the photographs as the speed is increased; and the last two photographs show fully turbulent flow. Modern traffic in the streets of Manchester made the critical Reynolds number lower than the value 13,000 found by Reynolds.

AS ROA MORE "MININI" STOONGER DISTURBANCES

61

Turbulent velocity fluctuations "mix" slow moving and fast moving fluid and in doing so transfer the stress from the wall, that is opposing flow, into the middle of the pipe. Result: high pressure drop for a given flow than if the flow were laminar.

NEWTONIAN FLUID:

NON NEWTONIAN FLUID

• IF YOU DON'T PUSH HARD ENOUGH ... IT DOESN'T FLOW

BINGHAM PLASSIC

• AS YOU PUSH HARDER, IT APPEARS TO FLOW MORE FASILY

 $M = m |\tilde{v}_{x}|^{m-1}$

MA ABBARENT VISCOSITY

 $\eta = \mu \quad IF \quad M = I$

"SHEAR THINNING" IF M 21

NON-NEWTONIAN FLUD

· YOU PUSH HARDER, IT RESISTS MORE

M= mliki M-1 "SHEAR THICKENING" IF M>1

FLUID REMEMBERS ITS PAST FLOW CONDITIONS ...

M = M(t)

Figure 2.17 Relationship between the shear stress and shear rate for Newtonian and non-Newtonian fluids. Fluid properties are Newtonian fluid, $\mu = 0.01$ g cm⁻¹ s⁻¹; Bingham plastic, $\tau_0 = 0.01$ dyn cm⁻², $\mu_0 = 0.01$ g cm⁻¹ s⁻¹; shear-thickening fluid (dilatant), m = 0.01 g cm⁻¹, n = 2.0; and shear thinning fluid (pseudoplastic), m = 0.01 g cm⁻¹ s^{-1.5}, n = 0.5.

9/20/16

Cyx = - 5 8x y

FOR A BINGHAM PLASTIC:

BLOOD FLOW

In the largest arteries for humans, the Reynolds number is large enough that we would expect turbulent flow and for the first few generations of the arterial system the flow is pulsatile.

So there are some limits to exact application of the analysis that we can do.

However, we can get some useful insights so we shall proceed. (You can read more at another time.)

Figure 2.30 (a) Shear stress versus shear rate for blood at a hematocrit of 0.40. (b) Data in (a) replotted according to Equation (2.8.6). (Adapted from Ref. [25].)

ire ronnat.

9/22/16

ire ronnat.

9/22/16

file format.

Figure 2.32 The apparent viscosity of RBC suspensions (divided by the plasma viscosity) as a function of shear rate. NP = normal RBC in plasma; NA = normal RBC in isotonic saline containing 11% albumin in order to make the liquid viscosity equal the plasma viscosity; HA = glutaraldehyde- fixed RBC in the same saline solution. (Reprinted with permission from Ref. [29], © 1970 American Association for the Advancement of Science.)

BLOOD CONTAINS LIQUID: PLASMA PARTICES: REDBLOOD CELLS... ETC SO WE COULD MODEL VISCOSITY WITH EINSTEIN'S RELATION: $M = M_{2}(1+2.5\phi)$ VOLUME FLACTIONOF PARTICLES VALIO FOR SUSPENSION OF SOLID SPHERES

ACADEMIC PRESS SERIES IN BIOMEDICAL ENGINEERING

BIOFLUID Mechanics

AN INTRODUCTION TO FLUID MECHANICS, Macrocirculation, and Microcirculation

DAVID A. RUBENSTEIN WEI YIN MARY D. FRAME

APE CHANCES WITH 7

$\tilde{\lambda}$	LOOD	Ĩ	UN1	N 0	Syd	:
FABLE 2.4						
Dimensions, V	'elocities, and l	Reynold	s Numbers in t	he Canine	Cardiovascular	System
Vessel	Internal diameter (cm)	Length (cm)	Peak blood velocity (cm s ⁻¹)	Repeak	Mean blood velocity (cm s ⁻¹)	🖕 Re _{mean}
Ascending Aorta	1.5	5	120	4,500	20	750
Descending Aorta	1.3	20	105	3,400	20	648
Abdominal Aorta	0.9	15	55	1,250	15	341
² emoral Artery	0.4	10	100	1,000	10	100
Arteriole	0.005	0.15	75	0.09	0.5-1	0.0006-0.0012
Capillary	0.0006	0.06	1	0.001	0.02 - 0.17	$2.86-24.3 \times 10^{-6}$
/enule	0.004	0.15	35	0.035	0.2-0.5	0.0002-0.0005
nferior Vena Cava Main Pulmonary	1.0	30	25	700		
Artery	1.7	3.5	70	3,000	0.15	6.43

Λ ~ 4 1 8 n キックと いっち 1001 C

Can we say anything about how the blood vessel branching might occur?

There is obviously a trade off between size and pressure drop

This is similar to capital versus operating costs for a chemical process.

We might suspect there are physiological constraints.

Perhaps there is a "sweet spot" in the amount of wall shear that this collection of components finds optimal.

Let's check some numbers....

ATLEAST FOR NEWTONIANMODEL Re -> F IF WEHAVE MYD WE WOULD GET A

$$\rho \left[\frac{\partial \mathbf{v}_{z}}{\partial t} + \mathbf{v}_{x} \frac{\partial \mathbf{v}_{z}}{\partial x} + \mathbf{v}_{y} \frac{\partial \mathbf{v}_{z}}{\partial y} + \mathbf{v}_{z} \frac{\partial \mathbf{v}_{z}}{\partial z} \right] = \rho g_{z} - \frac{\partial p}{\partial z} + \left[\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \tau_{zz}}{\partial z} \right]$$

Cylindrical coordinates

r component

$$\rho \left[\frac{\partial \mathbf{v}_r}{\partial t} + \mathbf{v}_r \frac{\partial \mathbf{v}_r}{\partial r} + \frac{\mathbf{v}_{\theta}}{r} \frac{\partial \mathbf{v}_r}{\partial \theta} - \frac{\mathbf{v}_{\theta}^2}{r} + \mathbf{v}_z \frac{\partial \mathbf{v}_r}{\partial z} \right] = \rho g_r - \frac{\partial \rho}{\partial r} + \left[\frac{1}{r} \frac{\partial (r \tau_{rr})}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta r}}{\partial \theta} - \frac{\tau_{\theta \theta}}{r} + \frac{\partial \tau_{zr}}{\partial z} \right]$$

 θ component

$$\rho \left[\frac{\partial \mathbf{v}_{\theta}}{\partial t} + \mathbf{v}_{r} \frac{\partial \mathbf{v}_{\theta}}{\partial r} + \frac{\mathbf{v}_{\theta}}{r} \frac{\partial \mathbf{v}_{\theta}}{\partial \theta} + \frac{\mathbf{v}_{r} \mathbf{v}_{\theta}}{r} + \mathbf{v}_{z} \frac{\partial \mathbf{v}_{\theta}}{\partial z} \right] = \rho g_{\theta} - \frac{\partial \rho}{\partial \theta} + \left[\frac{1}{r^{2}} \frac{\partial (r^{2} \tau_{r\theta})}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta\theta}}{\partial \theta} + \frac{\partial \tau_{z\theta}}{\partial z} \right]$$

z component

$$\rho \left[\frac{\partial \mathbf{v}_z}{\partial t} + \mathbf{v}_r \frac{\partial \mathbf{v}_z}{\partial r} + \frac{\mathbf{v}_\theta}{r} \frac{\partial \mathbf{v}_z}{\partial \theta} + \mathbf{v}_z \frac{\partial \mathbf{v}_z}{\partial z} \right] = \rho g_z - \frac{\partial p}{\partial z} + \left[\frac{1}{r} \frac{\partial (r\tau_{rz})}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta z}}{\partial \theta} + \frac{\partial \tau_{zz}}{\partial z} \right]$$

Spherical coordinates

r component

$$\rho \left[\frac{\partial \mathbf{v}_r}{\partial t} + \mathbf{v}_r \frac{\partial \mathbf{v}_r}{\partial r} + \frac{\mathbf{v}_{\theta}}{r} \frac{\partial \mathbf{v}_r}{\partial \theta} + \frac{\mathbf{v}_{\phi}}{r \sin \theta} \frac{\partial \mathbf{v}_r}{\partial \phi} - \frac{\mathbf{v}_{\theta}^2 + \mathbf{v}_{\phi}^2}{r} \right] = \rho g_r - \frac{\partial p}{\partial r} + \left[\frac{1}{r^2} \frac{\partial (r^2 \tau_{rr})}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\tau_{\theta r} \sin \theta)}{\partial \theta} - \frac{\partial (\tau_{\theta r} \sin \theta)}{\partial \theta} \right] + \frac{1}{r \sin \theta} \frac{\partial \tau_{r\phi}}{\partial \phi} - \frac{\tau_{\theta \theta} + \tau_{\phi \phi}}{r} \right]$$

$$\begin{aligned} \tau_{rr} &= 2\mu \frac{\partial v_r}{\partial r} \\ \tau_{r\theta} &= \tau_{\theta r} = \mu \left(r \frac{\partial}{\partial p} \left(\frac{v_{\theta}}{r} \right) + \frac{1}{r} \frac{\partial v_r}{\partial \theta} \right) \\ \tau_{zr} &= \tau_{rz} = \mu \left(\frac{\partial v_r}{\partial z} + \frac{\partial v_z}{\partial r} \right) \\ \tau_{\theta\theta} &= 2\mu \left(\frac{1}{r} \frac{\partial v_r}{\partial \theta} + \frac{v_r}{r} \right) \\ \tau_{z\theta} &= \tau_{\theta z} = \mu \left(\frac{\partial v_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial v_z}{\partial \theta} \right) \\ \tau_{zz} &= 2\mu \frac{\partial v_z}{\partial z} \end{aligned}$$

Spherical coordinates

OATAG IUF N なく tEA 0 AN THE N 4

1 YNES CENDINF RU2 19.2 DYNES 5 0 S E 1)

N ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	EAN UELOCITY	3.2 DYNE/Cm2	BOUT OTHER	4 er 3 - 1 2 - 1	37 6
L N	FUR ME	11 -3 -1	HAT A	H. P. C.	3600
			3	Ó.Ą.	44

ST LESS CONSTANT CONST PNT MANT LO W Al ti CONSIDE R ANCHINFF NUNE OF THESE 1U 3 Y 1 J T J T MO WHEZE KEEV 13 U

1/2 ORIDINAL A UFHTE 3 LOW RATE 9 FSSE HT. S S 2

. V2, ۱۱ 1H V N 1 2

51 00D VOI I G & DE QIVE D NUN PI I ZAT LTNC <u>jı</u> EL F J 5 MURRAY 上 GAN ALSO 1

Description of vessel	Number	Radius	Probable rank
		hun	
Superior mesenteric artery	-	1,500	0
Main branches of mesenteric art.	15	500	-1
Final branches of mesenteric art.	45	300	2
Short intestinal arteries (s.i.a.)	1,440	40	3
Long intestinal arteries (l.i.a.)	459	96	3
Last branches of s.i.a.	8,640	25	4
Last branches of l.i.a.	18,000	26.5	4
Branches to crypts	4,000,000	4	5, 6, 7
Branches to villi	328,500	15.5	5
Arteries of the villi	1,051,000	11.25	9
Capillaries of the villi (upper 2/3)	31,536,000	4	7
Capillaries of the villi (lower 1/3)	15,768,000	2.5	×
Veins at base of villi	2,102,400	13.25	6′
Veins between villi & submucosa	131,400	37.5	5'
Last branches of submucosal veins	18,000	64	4,
Anastomoses of submucosal veins	2,500,000	91	хх
Last branches of s.i.v.	28,800	32	4
Long intestinal veins	459	220	3,
Short intestinal veins (s.i.v.)	1,440	56	3,
Last branches of mesenteric veins	45	750	2'
Branches of mesenteric vein	15	1,200	1′
Mesenteric vein	-	3,000	0,
Muscie layers	. 000		0 1 2 0
Direct muscle arteries	1,800	C 00	0,4,9,0
Indirect muscle arteries	3,600	50	3, 4, 5, 6
Capillaries of circular muscle	27,000,000	1.5	2
Capillaries of longitudinal muscle	9,000,000,6	1.5	7
Veins	3,600	56	3', 4', 5', 6'
Peritoneum			
Artorios	360	24	3456
Capillaries	36.000		2
Veins	360	9	3'. 4'. 5'. 6'

	(1888)
TABLE I	DATA OF F. P. MALL

/essel rank	Σr^2	Σr^3	Σr*
	mm ²	nnm ³	11111 ⁴
0	2.2	3.4	5.1
1	3.8	1.9	0.94
2	4.0	1.2	0.36
3	8.6	0.54	0.043
4	20	0.51	0.013
5	140	1.5	0.021
9	200	1.8	0.019
7	650	2.4	0.0055
6'	380	5.5	0.10
5'	200	7.6	0.30
4,	120	6.3	0.37
3,	39	5.8	1.1
2'	25	19	14
,1	22	26	31
0,	6	27	81

[Y]
H
10
9
Z.
9
ō
8
AC
D
E
5
0
B
Ξ
Ę
BI
Z
5
4
S
Ξ
SS
r-1

TABLE II

0 The vessels of Table I have been grouped and r⁴ have been calculated for each rank.