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From the work to date, you have "checked off"
the first box regarding learning the subject of
transport phenomena. You can identify the
correct governing equation to start with, you can
find the important terms and you can get a
solution that matches the boundary conditions---
for the simplest problems.

So far, we have solved unidirectional flows, that
vary in only 1 direction, caused by gravity,
pressure change or a moving surface.

This is a significant accomplishment!
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CORMOUS PLoT |
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FIGURE 2-1 Motor vehicle fleets in relation to income, select-
ed countries, 1970 and 1996. NOTE: Per capita gross domestic
product (GDP) is transformed to dollars using market ex-
change rates (see footnote 2). SOURCES: Motorization data:
International Road Federation (2001 and earlier); other data:
World Bank (2001 and earlier).
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ORIGIN OF THIS BEHAVIOR!?

f~ M35

The heart (attempts) to provide, in response to various
stimuli, the flow rate of blood that Is needed (at some
instant) for all of a creatures needs

* Flowrate to provide oxygen and other nutrients

» To achieve this flowrate, “viscous losses” and gravity
head must be overcome

So the heart must simultaneously meet these two criteria



DIMENSIONAL REASONING

- flow rate times pressure gradient Is “power”
* Flow rate will be a heart volume/time period

* Pressure gradient Is caused by deceleration of “velocity squared”

* Heart power:

* (Vi*D) (p (Vh(13) *)2 ==> p 3V,5/3

« How does this power scale with animal size!



METABOLIC POWER(KLEIBER'S LAW)
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* Interesting... | don't know how “correct” it Is

« [here are other allometric observations....
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TABLE 1l
VESSELS IN TABLE 1 GROUPED ACCORDING TO RANK
Vessel rank =t p =t
reen’ me mm"
0 2.2 ‘4 5.1
| 8 1.9 RS |
Y 4 10 1.2 0.36
} 86 054 0043
| 20 051 0013
5 140 1.5 0021
b Ll 18 0019
7 650 e | 00095
&' J&0) 55 0.10
5 200 16 0.30
¥ | 20) Hhi 037
1 3 9 58 1.1
Y 25 19 "
I’ 744 26 5
U a9 27 Bl

The vessels of Table | have been grouped according 1o rank and the sums of r*, r”,
and r* have been calculated for each rank

The answer has to be that “nature” (millions of
years of evolution) has performed optimization, to
maximize fithess of organism, as constrained by
physical laws. '
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Test of Murray’s law

TABLE 1l
VESSELS IN TABLE I GROUPED ACCORDING TO RANK

Vessel rank >r2 =8 >

) mm3 mm"

2.2 5.1
3.8 1.9 0.94
4.0 0.36
8.6 0.043
0.013
0.021
0.019
0.0095
0.10
0.30
0.37
1.1
14
31
81

0
1
2
3
4
5
6
7

The vessels of Table T have been grouped according to rank and the sums of 7%, r°,

and r* have been calculated for each rank.
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On Connecting Large Vessels to Small

The Meaning of Murray’s Law

THOMAS F. SHERMAN

From the Department of Biology, Oberlin College, Oberlin, Ohio 44074

ABSTRACT A large part of the branching vasculature of the mammalian
circulatory and respiratory systems obeys Murray’s law, which states that the
cube of the radius of a parent vessel equals the sum of the cubes of the radii of
the daughters. Where this law is obeyed, a functional relationship exists between
vessel radius and volumetric flow, average linear velocity of flow, velocity profile,
vessel-wall shear stress, Reynolds number, and pressure gradient in individual
vessels. In homogeneous, full-flow sets of vessels, a relation is also established
between vessel radius and the conductance, resistance, and cross-sectional area
of a full-flow set.

INTRODUCTION
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Figure 5.14 Flow rate at a bifurcation
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Murray:

THE PHYSIOLOGICAL PRINCIPLE OF MINIMUM WORK. ‘I .
THE VASCULAR SYSTEM AND THE COST OF BLOOD VOLUME

By Cecir, D. MURRAY
DEPARTMENT OF Brorocy, BRYN MAawr COLLEGE

Communicated January 26, 1926

- Introduction.—Physiological organization, like gravitation, is a ‘‘stub-
born fact,” and it is one task of theoretical physiology to find quantitative
laws which describe organization in its various aspects. Just as the laws
of thermodynamics were known before the kinetic theory of gases was de-
veloped, so it is not impossible that some quantitative generalizations may
be arrived at in physiology which are independent of the discrete mechan-
isms in living things, but which apply to organic systems considered statis-
tically. One such generalization is the principle of the maintenance of
steady states—a principle which furnishes definite equations (of the type
indicating equality of intake and output of elementary substances) appli-
cable to the hypothetical normal individual. The purpose of these studies .
is to discuss the possible application of a second principle, the principle
of minimum work, to problems concerning the operation of physiological
systems. ' |




Classic Chemical

ENngineering:
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Pipe flow

FLUID-FLOW DESIGN

IMIETHODS

R. P. GENEREAUX

E. 1. du Pont de Nemours & Company, Inc.,

S INCE most chemical engineering plant designs require

consideration of fluid transportation, a familiarity with
the fundamental principles involved is of considerable value
in obtaining suitable and economic results. In the follow-
ing text certain fundamental principles are adopted for use
in solving fluid-flow problems.

Calculation of Flow in Pipes

The most common problem is the determination of pipe
size and pressure drop. Many of the publications cited in a
bulletin of the National Research Council (2) describe

Wilmington, Del.

to 4000) in which flow changes from viscous to turbulent or
vice versa, and above Re = about 4000 lies the turbulent
region. Most plant flows are in the turbulent region, for
which the theoretical relations are not so well known. Pipe
wall roughness does affect the friction factor. The plot of
f vs. Re data forms a relatively narrow band indicating a
curve of negative slope, the slope decreasing as the Reyn-
olds number increases. No such simple and accurate
formula as that for viscous flow has been obtained. How-
ever, two methods are used which give adequate accuracy
for design purposes.




Optimization

« Capital costs versus operating costs (1940)

ECONOMIC PIPE SIZE

IN THE TRANSPORTATION OF VISCOUS AND
NONYVISCOUS FLUIDS

B. R. SARCHET AND A. P. COLBURN

University of Delaware, Newark, Del.

The economic pipe size, for which the sum
of pipe and pumping costs is a minimum,
has been derived for both the turbulent and
viscous regions of flow. The resulting
equations are represented by convenient
nomographs. By solving the optimum-
diameter equations simultaneously with
the critical Reynolds number, a convenient
relation has been found to indicate whether
any given flow will be turbulent or viscous
in a pipe of optimum diameter. Although
the optimum velocity of many liquids in
turbulent flow runs from 3 to 4 feet per
second, much lower optimum velocities are
calculated for very viscous liquids.

exponential funection of diameter. For example, for ordinary
steel pipe in nominal sizes up to one-inch diameter the cost
increases approximately as the first power of the diameter.
For larger sizes the cost is closely proportional to the 1.5 power
of diameter. The annual cost of a unit length of pipe may
therefore be expressed generally as:

Cp, = C; D (1

The annual cost of pressure drop is evaluated by determin-
ing the cost of compressing gases or pumping liquids to over-
come pressure drop. The cost is zero when not charged to the
operation, such as in some cases when water is drawn from a
pressure main. The product of flow rate and pressure drop is
an exact expression of the work done in overcoming friction
in the case of liquids but not in the case of gases. The per-
centage error in assuming this to be true in the case of gases
is approximately half the percentage pressure drop!?, an error
which is unimportant for the small



For a pressure driven flow, we could get an exact
solution for an infinitely wide channel and a
circular pipe.

This is nothing short of "great" --except if the
channel is square!

So, what do we do”?
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Figure 3.7 Flow in a rectanguar channel of height h and width w. The section is through the plane z = 0.
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