
So far, we have solved unidirectional flows, that 
vary in only 1 direction, caused by gravity, 
pressure change or a moving surface.

This is a significant accomplishment!

From the work to date, you have "checked off" 
the first box regarding learning the subject of 
transport phenomena.  You can identify the 
correct governing equation to start with, you can 
find the important terms and you can get a 
solution that matches the boundary conditions--- 
for the simplest problems.











Slope=-0.37



ORIGIN OF THIS BEHAVIOR?
• The heart (attempts) to provide, in response to various 

stimuli, the flow rate of blood that is needed (at some 
instant) for all of a creatures needs

• Flowrate to provide oxygen and other nutrients

• To achieve this flowrate, “viscous losses” and gravity 
head must be overcome

• So the heart must simultaneously meet these two criteria

f ~ M-.35



DIMENSIONAL REASONING
• flow rate times pressure gradient is “power”

• Flow rate will be a heart volume/time period

• Pressure gradient is caused by deceleration of “velocity squared”

• Heart power:

• (Vh*f) (ρ (Vh(1/3) *f)2 ==> ρ f3 Vh5/3

• How does this power scale with animal size?



METABOLIC POWER(KLEIBER’S LAW) 
P ~ M.75



HEART RATE — MASS
• ρ f3 Vh5/3 ~M.75

• Further Vh ~M

• http://www.biologyreference.com/Re-Se/Scaling.html

• Which gives…

• f~ M-.31

• Interesting… I don’t know how “correct” it is

• There are other allometric observations….



The answer has to be that “nature” (millions of 
years of evolution) has performed optimization, to 
maximize fitness of organism, as constrained by 
physical laws.



Test of Murray’s law
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In analyzing these data, we seek to establish sets of  vessels that carry, 
without duplication, the full flow of blood brought in by the superior 
mesenteric artery. These full flow sets have been tabulated as ranks in Table  
I. In passing from the superior mesenteric vein, a particle of blood must flow 
through the following sequence of ranks: arteries 0, 1, 2, 3, 4, 5, 6, capillaries 
7, veins 6', 5', 4', 3', 2', 1', 0'. In some cases a vessel must be assigned to more 
than one rank. The branches to the crypts, for example, carry blood from 
arteries of rank 4 directly into veins of rank 6', so that these vessels achieve the 
same connection that vessels of ranks 5, 6, and 7 do in the villi. The ranks also 
represent the number  of major branching processes that Mall detected down- 
stream from the superior mesenteric artery (or upstream from the mesenteric 
vein). The actual number  of dichotomous branchings is obviously far higher 
than the number  of ranks. 

The ranks have been brought together in Table  II, where each vessel listed 

T A B L E  II 

V E S S E L S  I N  T A B L E  I G R O U P E D  A C C O R D I N G  T O  R A N K  

Vessel r a n k  Z r  2 Xr  a Z r  4 

m m  2 tom 3 rrtm 4 

0 2.2 3.4 5.1 
1 3.8 1.9 0.94 
2 4.0 1.2 0.36 
3 8.6 0.54 0.043 
4 2(I 0.51 0.013 
5 140 1.5 0.021 
6 200 1.8 0 .019 
7 650 2.4 0 .0095 
6'  380 5.5 0.10 
5 '  200 7.6 0.30 
4 '  120 6.3 0.37 
3 '  39 5.8 i. 1 
2' 25 19 14 
I '  22 26 31 
0 '  9 27 8l  

T h e  vessels o f  T a b l e  I have  been g r o u p e d  a c c o r d i n g  to r a n k  a n d  the  sums  o f  r 2, r ~, 

a n d  r 4 have  been  c a l c u l a t e d  for e ach  rank .  

in Table  I has been assigned to its appropriate rank or ranks. For each rank, 
a sum of radii squared (Y~r2), of radii cubed (~r3), and of radii to the fourth 
power (Zr 4) have been calculated. For homogeneous ranks (ranks with only 
one set of similar vessels), ]~r 2, ]~r 3, and ~r  4 are nr 2, nr 3, and nr 4, respectively, 
where n is the number  of vessels of  radius r. 

It is evident from Table II that in moving from rank 0 (the superior 
mesenteric artery) to rank 7 (the capillaries), Zr 2 increases dramatically and 
Zr 4 decreases to a similar degree. Since Y~r z is proportional to cross-sectional 
area of  the vessels and Zr 4 is proportional to their conductance to flow, Table  
II displays the striking manner in which area increases as conductance 
decreases in moving from the larger to the smaller vessels. It was this sort of 
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Murry revisited
On Connecting Large Vessels to Small 

The Meaning of Murray's Law 

THOMAS F. SHERMAN 
From the Department of Biology, Oberlin College, Oberlin, Ohio 44074 

ABSTRACT A large part of the branching vasculature of the mammalian 
circulatory and respiratory systems obeys Murray's law, which states that the 
cube of the radius of a parent vessel equals the sum of the cubes of the radii of 
the daughters. Where this law is obeyed, a functional relationship exists between 
vessel radius and volumetric flow, average linear velocity of flow, velocity profile, 
vessel-wall shear stress, Reynolds number, and pressure gradient in individual 
vessels. In homogeneous, full-flow sets of vessels, a relation is also established 
between vessel radius and the conductance, resistance, and cross-sectional area 
of a full-flow set. 

I N T R O D U C T I O N  

The arrangement of vessels in the organism is influenced by general physical 
laws as well as by specific physiological requirements. In the physics of 
transport, dimension is of  great importance, as is portrayed in the equations 
for steady-state flow and diffusion in tubes. If  a given vascular volume within 
a given tissue space is divided into a small number  of large vessels or a large 
number  of small vessels (all in parallel along a given length), steady-state flow 
and diffusion are affected in opposite ways. For a given pressure difference 
along the tubes and a given concentration difference between the wails of the 
tubes and the spaces around them, the flow along the tubes and diffusion 
from the tubes are both dependent upon the second power of the tube radii, 
r, but oppositely so: flow is directly proportional to r 2, whereas diffusion is 
inversely so. For a fluid transport system involving both translational flow 
and transmural diffusion, a compromise must be found between large and 
small vessels. In animals this has been done through arrangements of large 
and small vessels in series, the former to minimize the costs of bulk flow across 
relatively large distances, the latter to minimize diffusion distances and 
maximize diffusion surfaces. 

For over a century now the physiologist has been working with the laws of 
Poiseuille and Fick, which have served him well at any particular level of a 
branching system of vessels. The pattern of the whole, however, has been more 
difficult to understand. How should large and small vessels be connected to 
one another? Refuge from such a general question can be taken in the great 
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sex of Chaetocladium was grown with either sex of Parasitella, both species acted as 
host to the other parasite and galls were produced characteristic of both Parasitella 
and Chaetocladium. The parasitic behavior of Chaetocladium has been described 
in detail by Burgeff.2 

THE PHYSIOLOGICAL PRINCIPLE OF MINIMUM WORK. I. 
THE VASCULAR SYSTEM AND THE COST OF BLOOD VOLUME 

BY CECIL D. MURRAY 

DEPARTMENT OF BIOLOGY, BRYN MAWR COLLEGE 

Communicated January 26, 1926 

Introduction.-Physiological organization, like gravitation, is a "stub- 
born fact," and it is one task of theoretical physiology to find quantitative 
laws which describe organization in its various aspects. Just as the laws 
of thermodynamics were known before the kinetic theory of gases was de- 
veloped, so it is not impossible that some quantitative generalizations may 
be arrived at in physiology which are independent of the discrete mechan- 
isms in living things, but which apply to organic systems considered statis- 
tically. One such generalization is the principle of the maintenance of 
steady states-a principle which furnishes definite equations (of the type 
indicating equality of intake and output of elementary substances) appli- 
cable to the hypothetical normal individual. The purpose of these studies 
is to discuss the possible application of a second principle, the principle 
of minimum work, to problems concerning the operation of physiological 
systems. 

The concept of adaptation has been treated in a quantitative manner by 
experimental morphologists, students of growth and form, who have 
shown again and again the tendency toward perfect fitness between struc- 
ture and function in all sorts of plants and animals. Only rarely, however, 
has the concept of fitness been used as a premise for physiological deduc- 
tions. The beginnings of theoretical or deductive physiology are to be 
found in the works of Galileo' and of Borelli,2 who argued from the 
principle of similitude, as others have done since. Thompson's fascinat- 
ing book3 contains a wealth of material on this subject. Henderson's 
classic essay4 covers the history of the teleological problem, and pre- 
sents his own proof that the teleological aspect of nature (until Darwin's 
time associated with the minutiae of biological adaptations, and in the 
latter part of the last century associated with primitive theological doc- 
trine) has its real roots in the properties of matter and in the laws of physics 
and chemistry. Thus it may be seen that organization is a legitimate 
field for scientific inquiry and not an "affair of the reflective judgment." 
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Classic Chemical 
Engineering: Pipe flow

• 1937 

FLUID-FLOW DESIGN 
METHODS 

T 

R. P. GENEREAUX 
E. I. du Pont de Nemours & Company, Inc., 

Wilmington, Del. 

INCE most chemical engineering plant designs require 
consideration of fluid transportation, a familiarity with 

the fundamental principles involved is of considerable value 
in obtaining suitable and economic results. In the follow- 
ing text certain fundamental principles are adopted for use 
in solving fluid-flow problems. 

Calculation of Flow in Pipes 
The most common problem is the determination of pipe 

size and pressure drop. Many of the publications cited in a 
bulletin of the National Research Council (2) describe 
adequately the use of the Reynolds number and the Fanning 
equation which indicate that all Newtonian fluids1 follow 
the same laws of flow. Thus, a single type of relationship 
may be used for solving problems of flow in pipes. The 
Fanning equation may be expressed as : 

(1) AP = 4 fLp V 2 / 2  gD 

and the Reynolds number as: 

Re = DVp/p = DG/p  (2) 

Any consistent set of units, such as feet, pounds, seconds, 
may be used in these equations. By transposing Equa- 
tion l to obtain f, we find by substituting units that  f is 
dimensionless. This is also true of Re. A plot on double 
logarithmic paper of f and Re values calculated from the 
available pressure drop data exhibits the following charac- 
teristics, 

Below Re = 2000, the data fall on a line expressed by the 
formula 

f = 16/Re (3) 
which, when substituted in Equation 1, resul s in the Poi- 
seuille equation for viscous flow: / 
which has been proved theoretically (4) .  This equation 
holds for all circular pipe, whether smooth oq the so-called 
commercial pipe. 

Above Re = 2000 lies the “critical” region (Re = 2000 
It is simple and accurate, 

1 Newtonian fluids are those whose values of shearing stress us. rate of 
shear, when plotted on arithmetic paper, follow a straight line running 
through the origin; i. e., the viscosity does not vary with the rate of flow. 
This class includes all the gases and most of the liquids. A further de- 
soription is given on page 1271 of Perry’s handbook (4).  

to 4000) in which flow changes from viscous to turbulent or 
vice versa, and above Re = about 4000 lies the turbulent 
region. Most plant flows are in the turbulent region, for 
which the theoretical relations are not so well known. Pipe 
wall roughness does affect the friction factor. The plot of 
f vs. Re data forms a relatively narrow band indicating a 
curve of negative slope, the slope decreasing as the Reyn- 
olds number increases. No such simple and accurate 
formula as that for viscous flow has been obtained. How- 
ever, two methods are used which give adequate accuracy 
for design purposes. 

385 



Optimization
• Capital costs versus operating costs (1940) 

ECONOMIC PIPE SIZE 
IN THE TRANSPORTATION OF VISCOUS AND 

NONVISCOUS FLUIDS 
B. R. SARCHET AND A. P. COLBURN 

University of Delaware, Newark, Del. 

The economic pipe size, for which the sum 
of pipe and pumping costs is a minimum, 
has been derived for both the turbulent and 
viscous regions of flow. The resulting 
,equations are represented by convenient 
nomographs. By solving the optimum- 
,diameter equations simultaneously with 
the critical Reynolds number, a convenient 
relation has been found to indicate whether 
any given flow will be turbulent or viscous 
in a pipe of optimum diameter. Although 
the optimum velocity of many liquids in 
turbulent flow runs from 3 to 4 feet per 
second, much lower optimum velocities are 
calculated for very viscous liquids. 

KE of the major problems encountered in the process 
industries is the continuous transportation of gases and 0 liquids of various viscosities. Consideration of the 

large investment often involved in piping systems indicates 
the wisdom of choosing sizes of pipes for the greatest economy 
to the process. Genereauxl emphasized the importance of 
this problem and derived a general equation and convenient 
chart for the determination of the economic pipe size for 
fluids in turbulent flow. The welcome reception and wide- 
spread utilization of Genereaux’ procedure by practicing engi- 
neers has indicated the desirability of extending this method 
of attack to the general case of flow of fluids of various vis- 
cosities when the type of motion may be either turbulent or 
viscous. The purpose of this paper is to derive equations 
and charts convenient for determining the economic pipe 
size in either region of flow, and to supply a ready means of 
determining the type of flow under any given conditions. 

The selection of the most economical pipe diameter is based 
on a balance of the cost of the pipe, which increases with 
increased diameter, and the cost of the pressure drop (pump- 
ing or blowing costs), which decreases with increased diame- 
ter. The most economical pipe diameter is that for which the 
sum of these costs is a minimum. 

The determination of the cost of pressure drop is dependent 
upon the conditions of flow. In  the turbulent region the 
pressure drop varies differently with the variables, velocity 
and diameter, from that in the viscous region; so it would be 
expected that the optimum diameter would be a different 
function of the flow rate in the two regions. For the turbulent 
region the equation and chart derived by Genereaux can be 
utilized, and i t  is given later with slight modification. For 
the viscous region the derivation is given below. 

The cost of pipe can be expressed over a certain range as an 
1 Genereaux, R. P. ,  IND. ENQ. CHEM., 29, 385-8 (1937); Chem. & M e t  

Ens., 44, 281-8 (1937) .  

exponential function of diameter. For example, for ordinary 
steel pipe in nominal sizes up to one-inch diameter the cost 
increases approximately as the first power of the diameter. 
For larger sizes the cost is closely proportional to the 1.5 power 
of diameter. The annual cost of a unit length of pipe may 
therefore be expressed generally as: 

The annual cost of pressure drop is evaluated by determin- 
ing the cost of compressing gases or pumping liquids to over- 
come pressure drop. The cost is zero when not charged to the 
operation, such as in some cases when water is drawn from a 
pressure main. The product of flow rate and pressure drop is 
an exact expression of the work done in overcoming friction 
in the case of liquids but not in the case of gases. The per- 
centage error in assuming this to be true in the case of gases 
is approximately half the percentage pressure drop1, an error 
which is unimportant for the small pressure drops encountered 
in viscous flow of gases. Making this approximation and 
letting C4 be the annual cost of supplying 1 foot-pound of 
energy per second, the annual cost of energy expended as 
friction per unit length of pipe is: 

(2) C E  = cq q A P / L  

In  the region of viscous flow the pressure drop is related 
to the flow rate by the Hagen-Poiseuille equation: 

(3) 
A€‘ 3 2 p  V 40 .8pq  
L g D 2  g D 4  

_ = - = -  

where q = T 0 2  V/4 

The annual cost of energy per unit length of pipe to overcome 
friction then becomes : 

40.8 cq P q2  
9 D4 

C E  = (4) 

The total annual cost of pipe and energy is the sum of Cp and 
CE.  The rate of change of total annual cost with pipe di- 
ameter is then: 

The optimum diameter is that  for which the sum of the costs 
is a minimum, for which diameter the above derivative is 
equal to zero. Setting the derivative equal to zero and solving 
for DOpt. gives: 

This equation is expressed in consistent units. It is often 
convenient to assume the foot-pound-second system and then 
to convert the diameter to inches, D = DJ12,  and the vis- 
cosity to centipoises, p = 0.000672 2. Furthermore, it  is 
more convenient to utilize the cost term as: 

1249 



For a pressure driven flow, we could get an exact 
solution for an infinitely wide channel and a 
circular pipe.  

This is nothing short of "great" --except if the 
channel is square!

So, what do we do?
























