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1. Comparison of reactor configurations. (65 points)

A 1000 liter batch reactor has been used for many years for an A—>M isomerization. All that is
“known” about the kinetics is that once the reaction temperature of 50C is reached, the
concentration of A is reduced to 10% of its original value (which is 5 moles/liter) after 5000
seconds.

a. Assuming the simplest possible kinetics, find an expression that predicts the concentration
of A at any time in the reactor.

b. The normal procedure is that the reactor is stopped after 5000 seconds. The reactor is
drained and refilled which also takes 5000 seconds. Assuming that this done continuously
all day, every day, what is the production of M in moles/time from this reactor?

c. With only this information, what flow of A feed and what size of reactor are needed if you
want to produce the same amount of A per time in a CSTR? Pick the exit condition of the
CSTR to match the batch reactor at the end of a batch (i.e., 0.5 mol/l).

d. Compare the volumes of the batch and CSTR reactors. Is this result (i.e., one of the
volumes larger than the other) likely to be generally true or only because of the specific
numbers of this problem?

e. You suspect that the kinetics are actually not always first order. (The small amount of
“secret catalyst” which is needed certainly adds to this thinking.). A nominal “guess” for a
possible kinetic expression is:

ki Ca
Km + kz CA

o =

If this is the actual expression, explain any need to change the sizing of your CSTR.

f. Give one simple experiment that would improve the accuracy of the CSTR sizing.



2. (Very) simplified model of a virus vaccine. (35 points)

In
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the immune response to the yellow fever vaccine
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the authors model the yellow-fever vaccine after injection into humans. Their simplified model
uses 10 equations instead of the 19 for previous models. They are able to fit the time shortly
after the initial inoculation (a few weeks — bottom figure) and then the slow decay of the
desired antibodies over a little more than a decade. This long decay is remarkably linear as
shown just below.)

14000 - Computational results
12000

10000

8000

Antibody level

6000

4000

2000

0 500 1000 1500 2000 2500 3000 3500 4000
t(days)

Fig. 2. Antibody curve obtained by the model (line) and experimental data
extracted from the literature[34] (dots).
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Fig. 1. Antibody curve obtained by the model (line) and experimental data
extracted from the literature[34] (dot).

Consider this process as
Virus —> plasma cells —> Antibodies
V->P->A

as sequential reactions. If we write

dV

— = - aV

dt

dP

— = kyV - ky, P
dt 1 2
dA

— = ko P - ks A
dt 2 3

Then the solution is

i - DSolve[{ D[V[t], t] = - aV[t], D[P[t], t] = k1V[t] - k2 P[t],
D[A[t], t] = k2P[t] - k3A[t], P[O] =0, A[0] =0, V[O] = vO}, {V[t], P[t], A[t]},
t]
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Or assigning the expressions.

virus = V[t] /. %50[1]

e T vo

plasmacell = FullSimplify[P[t] /. %50[1]]

(e’kzt - e’ta) klvo

k2 - a

antibody = FullSimplify[A[t] /. %50[1]]

e—t (k2+k3+a) k1l k2 v0O <e(k2+k3) t (k2 _ k3) " (et (k3+a) (k3 _ O() + et (k2+a) (—k2 " OC) >

(k2 - k3) (k2 -a) (k3 - o)

A plot for nominal numbers is:

Plot[{virus /. {a» 1, k3> .1, k2 > .3, kl >4, vO > 1},

plasmacell /. {a »1, k3 > .1, k2> .3, kl >4, v0 > 1},

antibody /. {a -1, k3> .1, k2 » .3, ki->4, vO>1}}, {t, 0, 20}, PlotRange » {0, 3},
AxesLabel » {"time (days)", "concentration"}, PlotLegends » {"V'", "P'", "A"},
PlotStyle -» { Dashing[{.05, .03}], Dashing[{.02, .02}], Dashing[{.03, .07}]1}]
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a. Will this model give the long linear tail seen in figure 2 above? If not, what modification to
the ode’s would be needed?
b. Find an expression for the time of the peak for the plasma cells.



c. One concern with vaccination is an antibody level that peaks at too high of a value which
could cause medical complications. With reference to the mathematical model, what could
be done to reduce this peak?

d. How could you reduce the antibody peak without causing a decrease to the long term
antibody level?

e. What is the significance of the a/kiratio?

Please note: This very simple model is cannot and is not intended to exactly predict the
behavior that would occur after administration of this vaccine. However, the same is likely true
for even the most sophisticated models of complex living or natural systems. What the
modeling can uncover is possible behavior scenarios which were not directly observable (for
example the value of the intermediate peaks) and lead to possible “testable” hypotheses or
reduce the need of the total number of experiments — possibly on humans



rate of accumulation
of reactant A
within the reactor

rate of disappearance of
= ~—reactant A within the reactor (8.1.1)
by chemical reaction

The accumulation term is just the time derivative of the
number of moles of reactant A contained within the reac-
tor (dN /dr). This term may also be written in terms of
either the extent of reaction £ or the fraction conversion of
the limiting reagent (f, ). (A is presumed to be the limiting
reagent.) Thus,

dN,  dt df,
—_— = — T — . -2
dar A Nao dt ®.1.2)

where Ny, is number of moles of species A present when
the fraction conversion is zero.

The total rate of disappearance of reactant A is given
by

rate of disappearance of A = (—r,)V, (8.1.3)
We again emphasize that Vj, is the volume physically occu-

pied by the reacting fluid. Combination of equations (8.1.1)
to (8.1.3) gives

d
NAO% = (=ra)Vg (8.1.4)

Rearrangement and integration give the general form of the
design equation for a batch reactor:

Taz df,
t— t; =N / ., (8.1.5)
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rate of flow Rate of flow of
of reactant into = reactant out of
volume element  volume element

rate of disappearance

of reactants by chemical 8.2.1)
reactions within the -
volume element

If the molal flow rate of reactant A into the volume ele-
ment is designated as F,, and the molal flow rate out of
the volume element is represented by F + dF,, equation

v,
Fy +dF,
Fy
. —_——
—_—
i 8 IR IA

Figure 8.3 Schematic representation of differential volume element
of plug flow reactor.

(8.2.1) becomes

Fa=(Fp+dFy)+(=ry)av, (8.2.2)

or
dFy =rydVy (8.2.3)

At any point the molal flow rate of reactant A can be
expressed in terms of the fraction conversion f, and the
molal flow rate corresponding to zero conversion AO-

Fpy=Fpg(l1=£,) (8.2.4)
Differentiation gives
dFy = ~F,, dfy (8.2.5)
Combination of equations (8.2.3) and (8.2.5) gives
dav, df,
F—" = A (8.2.6)
a0 (=74

which may be integrated over the entire reactor volume to

obtain
Ve _ /’ df,
FAO Frin (—"A)

(8.2.7)
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material balance may be written over the entire reactor.
Hence,

rate of flow rate of flow of
of reactant into = reactant out of
reactor reactor

rate of disappearance

+ of reactants by reaction (8.3.1)
in the reactor
In terms of the symbols indicated in Figure 8.5,
FA in = FA out + (_rA,.')VR (83.2)

where we again emphasize that the appropriate volume is
that physically occupied by the reacting fluid. The quantity
(=rar) is the rate of disappearance of reactant A evaluated
at reactor outlet conditions.

Equation (8.3.2) may be rewritten in terms of the frac-
tion conversion as

Fao(l = fa in) = Fao(1 = £, ou) + (=7Ap) Vg

where Fy; is again the molal flow rate corresponding to
zero conversion. Rearrangement gives

ﬁ =onul" fAin
Fpo (=7ar)

(8.3.3)

(8.3.4)

amount or reactant introduced into the system or relative
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" Ifthe molal flow rate at zero fraction conversion is writ-
ten in terms of the product of a reference volumetric flow
rate V, and a corresponding concentration (Cao)s

ﬁ . CAO(fA out fA in)

8.3.5
7, ) (8.3.5)
In terms of the reactor space time,
FA ou
c — faw) Cno Ji™dfy
T = A0A ot = fa in) - fan (8.3.6)

(=7ar) (=rar)
This equation differs from that for the plus flow reactar

Because one is almost always concerned with liquid-
phase reactions when dealing with stirred-tank reactors, the
assumption of constant fluid density is usually appropri-
ate. In this case, for constant-density systems only, equation
(8.3.6) can be written as

Ci ou
J CA'\&I dCy Cain— Caou
T = = (8.3.7)
(rar) (=7ar)
We now wish to consider some examples that indicate
how to employ the foregoing equations in reactor design
analyses.

For the set of first-order consecutive reactions,

k
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to the amount of reactant consumed. For example, for the

reaction
uA + bB = rR + sS

where we take A to be the limiting reagent, the yield of

(9.0.1)

determine the optimum-holding time in-a batch reactor and
the optimum space time in a plug flow reactor in terms of

species R (Y’;) may be defined as L —— (A)
—_——e "
Cao
a(Ng = Ngo) Cy &
Yp=—"—2L 9.0.2 o= ek gl (B)
R HNpo = Ny) ©.02) Cro k-t
Sw_,_ G & -
where Ny, and N, are the moles of species R and A present Cno Cro Cao

The time corresponding to maximum yield of V is
obtained by differentiating equation (B) with respect to
time and setting the derivative equal to zero:

d(Cy/Cr) _ Ky

—kje™ + ke’ = 0
dt PR =)

or k

=1 _ e~ 2=k topiinum
k2

Hence, for a plug flow or batch reactor:
_ In(k, /ky) _ 1

toptimum -

(D)

kl . k2 - klog mean



dNy _ dVgrCa
dt dt
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...... pUsL W £C1U Lracton conversion. Thus,
Ve Ve T
_—= — = (8.2.8)
Fpg Cao¥ Cao

where we have introduced the space time t. Combining
equations (8.2.8) and (8.2.7) gives

V f/\oul d
T= o8 = Gy / I (8.2.9)
Yo X (—rA)
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