CBE 40445 8/19/20

REJERSIBLE REACTIONS

FITTING MONOD KINDTICS

GETTING ACTIVATION ENERBY FROM ORTA.

BESIDES (THERE IS MORE TO THE STORY OF: WHAT DID Z THE STUDENT HAVE HZ SOY + DIETHYLSULFATE (C2H5)2 504 FOR LONCH.

IT'S REJEASIBLE

H2SO4 + (C2A5)2 SO4 - 2C2 H3SO4 H

> 2 C2 H5 SD4 #

108

Table 6.5. Concentration of H_2SO_4 versus time for the reaction of sulfuric acid with diethyl sulfate in aqueous solution at 22.9°C, full data set. Data of Hellin and Jungers, Bull. Soc. Chim. France, No. 2, pp. 386-400 (1957).

Time, t (min)	concentration of H_2SO_4 , $c_A(t)$ (g-mol/L)	
0	5.50	
41	4.91	
48	4.81	
55	4.69	
75	4 38	
96	4 12	
127	3.94	
146	3.64	
162	3.62	
180	3.59	
194	3.44	
212	3.34	
267	3.27	
318	3.07	
379	2.92	
410	2.84	
x	2.79	
	2 60	

Equations 6.18 and 6.19 can be combined to give

 dc_A

F

Somehow I know this is [[2]], but I think that [[4]] also works.

model = cA[t] /. %[[2]] $2\left(-2\ cA0\ k2 + cA0\ \sqrt{k1}\ \sqrt{k2}\ Tanh\left[2\left(cA0\ \sqrt{k1}\ \sqrt{k2}\ t + \frac{1}{2}\ ArcCosh\left[-\sqrt{-\frac{\sqrt{k2}}{\sqrt{k1}-2\ \sqrt{k2}}} + \frac{\sqrt{k2}}{\sqrt{k1}+2\ \sqrt{k2}}\ \right]\right)\right]\right)$ k1 - 4 k2

ANOTHER LOOK AT REVERSIBLE RXN. EYCEL "SOLVER' FIT OF

y separating the concentration- and this

$$\frac{K_{eq}dc_A}{4(c_{A0}-c_A)^2-K_{eq}c_A^2} = k_1dt.$$

and side is a form that is readily found in tables of integrals. Upo he left-hand side from c_{A0} to the current value $c_A(t)$, and the righ = 0 to the present time, we obtain

$$\ln\left[\frac{c_A(2-\sqrt{K_{eq}})-2c_{A0}}{c_A(-2-\sqrt{K_{eq}})+2c_{A0}}\right] = \frac{4c_{A0}k_1}{\sqrt{K_{eq}}}t$$

E 6.4 The reaction between sulfuric acid and diethyl sulfate stu e 6.1 is, in fact, reversible, although the assumption of irreversibili it to the data up to a time of 194 minutes. The full data set is sh Find the rate expression, assuming that both the fu

$k (s^{-1})$		
1.04×10^{-5}		
3.38×10^{-5}		
2.47×10^{-4}		
7.59×10^{-4}		
4.87×10^{-3}		

= -11881

MOLE

 T^{-1}

LATALYST

(SUSFD

RF.DUCVF

Er.

AN OBVIDUS REASON FOR E TO VARY IS INTERNAL BONDING OF NOLE CULE

WHILE A CAN ALSO CHANGE FOR DIFFERENT SYSTERS,

A SUFFICIENTLY HIGH T IS NECESSARY TO MAKE REACTION OCCUR AT FINITE RATE.

REACTION TIME SCALES FOR DIFFERING ACTIVATION ENERGY

Figure 2.8 A plot of $\tau_{1/2}$ versus. E_a at 100, 200, 300, 400, and 500 K.

SOME DATA FOR FRJCTOSE - GLUCOSE Ate AE MTE

6.4 Elementary Statistical Methods 179

Conversion of fructose to glucose at 70 °C					
$-r_{\rm F}$ (µmol/min-mg) ^a	[F] (mmol/l)	$-r_{\rm F}$ (µmol/min-mg) ^a	[F] (mmol/l)		
9.46	1000	6.21	100		
7.95	500	5.96	100		
7.57	325	5.70	90		
7.80	250	5.79	80		
7.87	200	5.14	70 60		
7.04	175	4.73	50		
7.04	160	4.12	40		
6.82	140	3.48	30		
6.74	120	2.77	20		
6.52	110	1.60	10		

^aOf enzyme.

¹Vieille, C., Hess, J. M., Kelly, R. M., and Zeikus, J. G., *xylA* cloning and sequencing and biochemical characterization of xylose isomerase from thermotoga neapolitana, *Appl. Environ. Microbiol.*, 61(5) 1867-1875 (1995).

THIS MIGHT BE OK, BUT ...

• WHERE DID 'RATE' COME FROM 7

- IS THIS A FINITE DIFFBRANCE DEDIDATION OF CONCENTRATION J. TIME DATA?

- ADDS TO "NOISE"

• LINEAZIZATION WILL SKEW WHICH PDINTS ARE EMPHASIZED.

SO TRY A NONLINEAR

FIT (N EXCEL

INITIAL GUESSES

OF VMAX = 5

K.m = 40

ARE RESOLVED TO

Nonlinear fit to data

Concentration

ISSUES RELATED TO DATA & DATA ANALYSIS

MATHE MATICA INSIGHTS ...