

CBE 40445 FALL 2020 REVIEW 11/11/20

BIG IDEAS

- 1) MASS BALANCES TO

 ANALYZE REACTORS

 OF DIFFERENT CONFIGURATIONS
 - 2) OFFAILED QUANTITATIVE ANALYSIS
 OF KINETIC DATA
 - 3) US E & LIMITATIONS OF SOLID CATALYSTS FOR REACTIONS
 - 1) INCLUSION OF ENERGY
 BALANCE TO ANALYZE
 REACTORS THAT REDUIRE
 COOLING OR ARE NOT ISOTHERMAL
 - 5) SOME CONSIDERATION OF FLOW LIMITATIONS OR MIXING IMPERFECTIONS

CHAPTER 10
THIS LAST ONE IS A BIT OF
A CURIOSITY BUT CONSIDER

dest FRRE SPACE

PACKED

(())

EXAMINE THE FRACTION OF
FLUID BY PASSING PACK ING

$$f_{f} = \frac{d_{p} \Delta P}{2}$$
 $R_{e} = \frac{d_{p} U g_{f}}{M_{s}}$

$$f_{\varsigma} = \frac{1-\overline{\epsilon}_{\delta}}{\overline{\epsilon}_{\delta}^{2}} \left[1.75 + 150 \left(1-\overline{\epsilon}_{\delta} \right) \right]$$

DIAMETER OF CATALYST PELLET

EB = VOID FRACTION = 0.37 FOR IDENTICAL
SPHERES

MG = VISCOSITY OF LIQUID OR GAS

SG = DENSITY OF LIQUID OR GAS

U = "SUPERFICIAL V ELOCITY =

VOLUMETRIC FLOW

CROSS-SECTION ALEA

DP = PRESSURE CHANGE

DISTANCE IN FLOW DIRECTION

USE MY NUMBERS IF THIS COMES UP.

STHERWISE FLOM CHAPTER 10 ...
I WOULD KEEP A POESDLUER
HANDY ...

- I SUPPOSE I COULD ASK YOU TO INTERPRET RESULTS

- MASS BALANCES FOR REACTORS OF VARIOUS CONFIGURATIONS

1. CSTR vs. Batch reactor A-> M, exothermic reaction (60 points)

Consider a simple first order reaction of A->M. A batch reactor will be compared to a CSTR with the required conversion, $f_A = .9$ (that is, the exit C_A concentration/molar flow will be 10% of the feed, C_{A0} .)

Consider first the batch reactor. Suppose that its volume of V = 100 l is filled with reactant A that has a concentration, $C_{A0} = 1$ mole/l. The heat capacity of the A and M are the same: $C_{pA} = C_{pM} = 100$ J/(mole K). The initial temperature is $T_{feed} = 300$ K. The reaction rate constant is $K = 10^{15}$ Exp[-12000/T] (1/s) and the heat of reaction is $\Delta H_r = -4,000$ J/mol.

- a. What batch time will be needed for the requisite conversation of 90% of the A into M if the temperature is kept at 300K?
- b. What quantity of heat must be removed to keep the reactor at 300K?
- c. If the reactor were operated adiabatically, what would the final temperature be?
- d. For an adiabatic reactor, the maximum reaction <u>rate</u> does not always occur at $f_A = 0$. Explain why this is so.
- e. Sketch the reactor temperature as a function of time for the adiabatic case.
- f. Under what conditions could the reactor temperature rise and then decrease during the course of a reaction?

A ISO THERMAL BOTTCH REACTOR

$$\frac{d(VCA)}{dt} = \frac{NOFION}{-2} - 2CAV$$

$$k = .0042/S$$

$$\frac{dCA}{dt} = -kCA$$

$$\frac{dCA}{dt} = -kflt$$

$$\frac{dCA}{CA} = -kflt$$

$$\frac{dCA}{CA} = -kflt$$

$$\frac{dCA}{CA} = -kflt$$

$$\frac{dCA}{CA} = -kflt$$

BH M f HEAT REMOVED TO KEEP T = 300 = -4000 J × 100 MOLES X .9 =-360,000] SUPPOSE ADIABATIC ALL HEAT GOES TO PAISING T OFFLUID (HEAT REMOVED) DHM f + MCp (T-T INITIAL) DHS = (40005/NOLE)(.9) DT= APIABATIC DT = 36 K TEMP PISE!

d) n= lCa IF T h h P ASTER THAN

CA d.

S) WOULD REQUIRE COOL, NG

Now, independently consider a CSRT with a feed stream of 1 l/s at 300K, where $C_{A0} = 1$ mol/l. The heat capacity of the A and M are the same: $C_{pA} = C_{pM} = 100$ J/(mole K). The reaction rate constant is $k = 10^{15}$ Exp[-12000/T] (1/s) and the heat of reaction is $\Delta H_r = -4,000$ J/mol.

- g. What reactor volume is needed to accomplish the requisite conversion of 90% of the A into M if the temperature is kept at 300K?
- h. If the reactor is operating at 300K, what is the heat removal rate?
- i. If the reactor is operated adiabatically, what is the steady state temperature?
- j. For this case, what is the necessary residence time?

RATE OF GENERATION HEAT REMOVAL = THROUGH WALL COILS

Q = (DH) (NATE OF REACTION) TIME MOLE) (MOLES) - DA, LCA V (= DH F, f)

 $= -4000 \, \text{S/MOL} \, (.0042) \, (01M) \, (2120L)$

Q = -3600 J/S

ADIABATIC, DUT SOMEHOW STILL GET SAME S.

0 = 0H, FAS + FA(1-4)CPA+FCPM)DT

- DT = -3600 J/S

[MOLE/S) (.1 100 J + .9 100 J MOLEK)

DT = 36 K

1 AGAIN PICKED THE CONCEPT OF 90% CONVERSION + TFINAL = 336 le (33G) = ,31/S

~ = 30s

COMPARE BATCH + CSTR

FOR

DT = AH F
CP FINAL MIX

AS LONG AS NO DILUENTS

OR AT LEAST IF

MULES A = SAME FOR

MULES INERT SOTH

NO MATTER WHAT ...

IF A MOLE OF M IS PRODUCED

DH = 4000 S

IF FLUIDS ARE TO STAY

ISD THERMAL

THIS MUCH HEAT HAS TO

BE REMOVED

PLUG FLOW/TUBULAR REACTOR

$$\frac{\partial C_{A}}{\partial z} = Y_{A} \wedge \frac{1}{z} = \frac{1}{z} C_{A} \cdot \frac{1}{z} = \frac{1}{z$$

REACTION EQUILIBRIUM

$$K = \prod_{i} a_{i}^{V_{i}} \qquad a_{i} = \underbrace{x_{i} \phi_{i} P}_{P^{o}}$$

$$M K = \frac{-\Delta 6^{\circ}}{RT} \qquad \Delta 6^{\circ} = \leq \Delta 6_{i \text{ FORMATION}}$$

EXOTHERMIC

> REACTANTS

aA+bB = mM+nN

$$\mathcal{K}_{a} = \frac{\times_{m} \times_{N}}{\times_{A} \times_{B}} \left[\begin{array}{c} \Phi_{m} & \Phi_{N} \\ \Phi_{A} & \Phi_{3} \end{array} \right] \left[\begin{array}{c} \Phi_{0} \\ \Phi_{0} \end{array} \right] \left[\begin{array}{c} \Phi_{0} \\ \Phi_$$

FILL IN X'S FROM A MASS BALANCE

1/2 N2 + 3 H2 = WH3

N2 25 25 25 - \$
H2 75 75 - 3\$

NH3 0 2 2

100 (00-2 \$

RATES REACTION 17NITIAL MOLES NOW MOLK S M; (+) - M; 0 \$ (+) = Vi STOICHIOMETRIC EXTENT OF COESFICIBUT REACTION 1 = MOLES/TIME VOLUME n= hCA, hCACB, hCA B+ KCA

WE EXPECT

$$\Lambda = k(T) F(C_{i,T})$$

$$k = \pi \exp \left(-\frac{E_{A}}{RT}\right) ARRHENIUS$$

FOR RATE EXPRESSION

1 = h CA

CATALYSTS

ENERO Y

REACTION
PRODUCTS

W/CATALYST

LANGMUIR ADSORPTION

ZA3 (PA)

OA = KAOS [A]

DEGATIVE

(Fauil BRIUM)

(SEE TEST 2 REVIEW)

A > M CATALYTIC

SITES > *

1= h2KAOS [A][+]0

1+ h2 + KAOS [A]

CATALYSTS!

INJERNAL DIFFUSION:

$$\frac{d^2\theta}{dx^2} - \frac{kL^2}{0_{7A}} \Rightarrow = 0$$

$$\phi^2 = \frac{2L^2}{0_{TA}}$$
 THIELE MBDOLUS

COULD HAVE EXTERNAL RESISTANCE

EXTERAL COMPARED TO INTERNAL RESISTANCE

Biot #

FOR IST ORDER, COUSTOTA SOLUTION IS EASY TO GET!

$$0 = \frac{d^2\theta}{dx^2} - \theta^2\theta$$

$$G(x) = \frac{Bi \left(cosh(xb) \right)}{Bi \left(cosh(b) + dsinh(b) \right)}$$

BACK TO NON ISSTHERMAL