

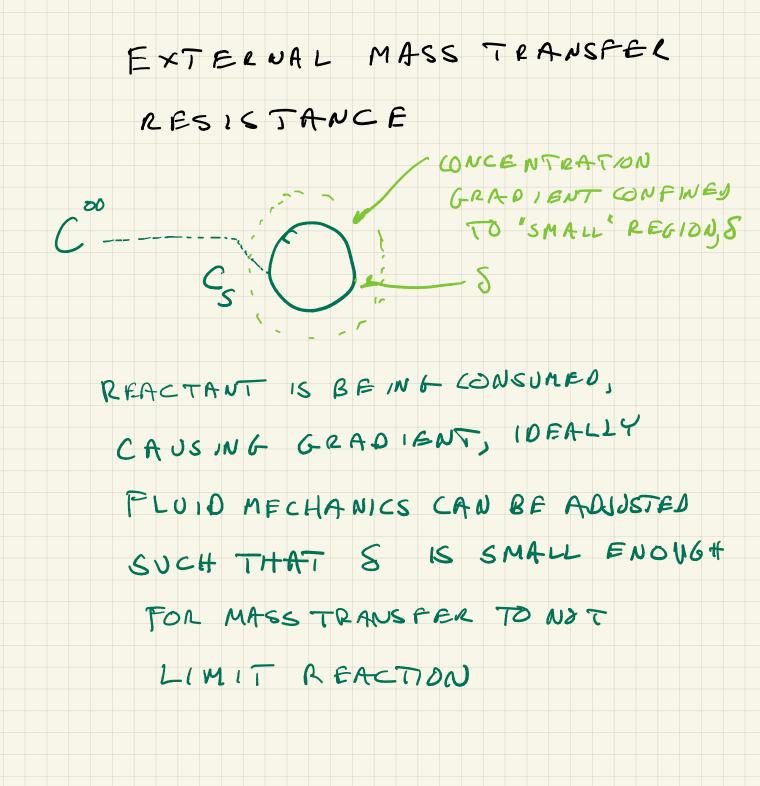
AS WITH OTHEL CHAPTERS,

A LOT OF INTERESTING

IN FORMATION IN PROSE

SFOR A PRACTICAL, EFFICIENT

PROCESS


MASS TEANSFER RATES AND

KINETIC RATES NEED TO BE

ABDUT THE SAME.

WEISZREF: 1 <u>MNOL</u>(1982) <u>Cm³-S</u>

TURNOVER FREQUENCY: 1/s 10^{6} moves $V = \frac{10^{6}}{4R} = 300 m^{3}$ $1 \frac{\mu nol}{cm^{3}-s}$

PARTICLE COULD BE

© ~100 pm CRACKNG CATALYST

NHIGHVELOCITY GAS FLOW

© COULO BE ~ 1 mm

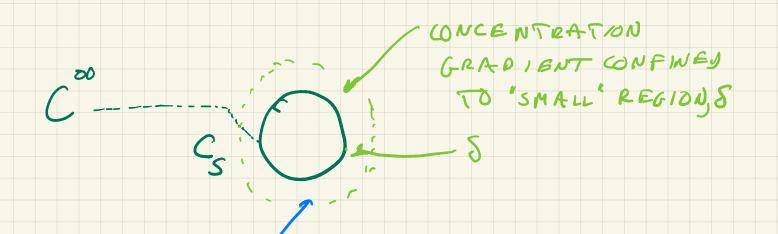
LIQUID PHASE HYDROTREATING

HPOROGENAJION ---

(STIRRED TANK)

GAS FLOW

LIQUID FLOW


IN MOST CASES, PELLET IS POROUS

AND MOST OF ACTIVE CATALYST

(S INSIDE

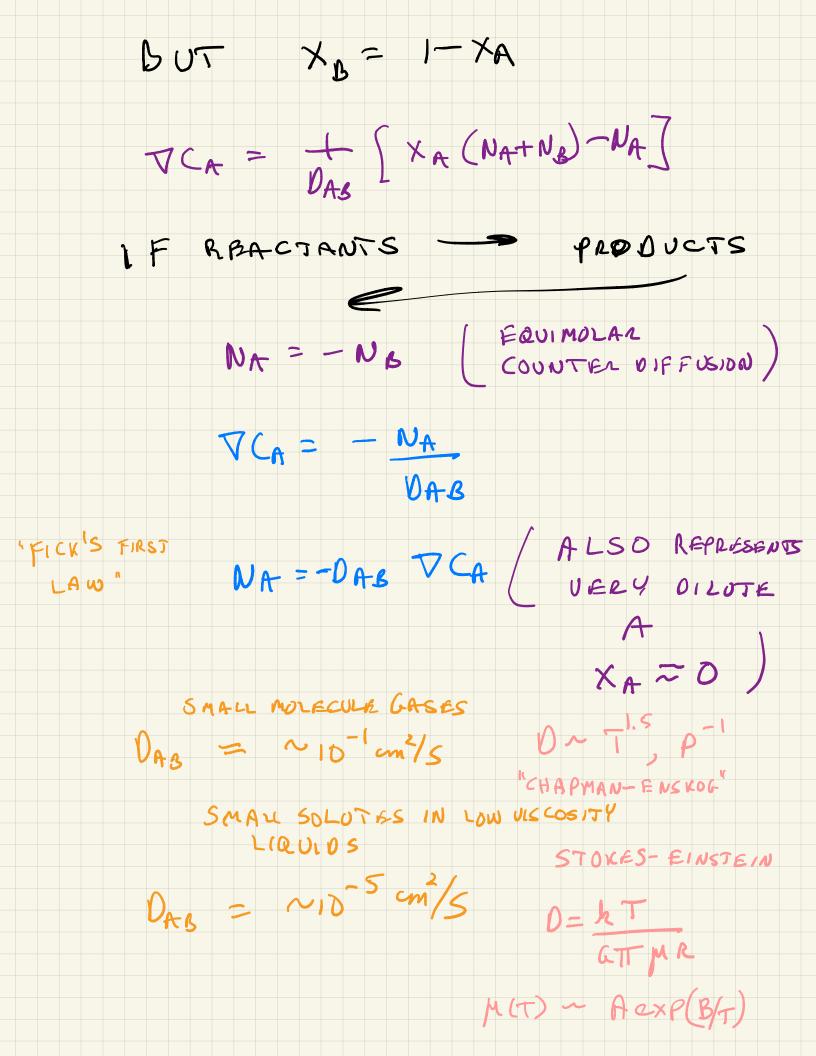
- SO THERE ALSO LAN BE

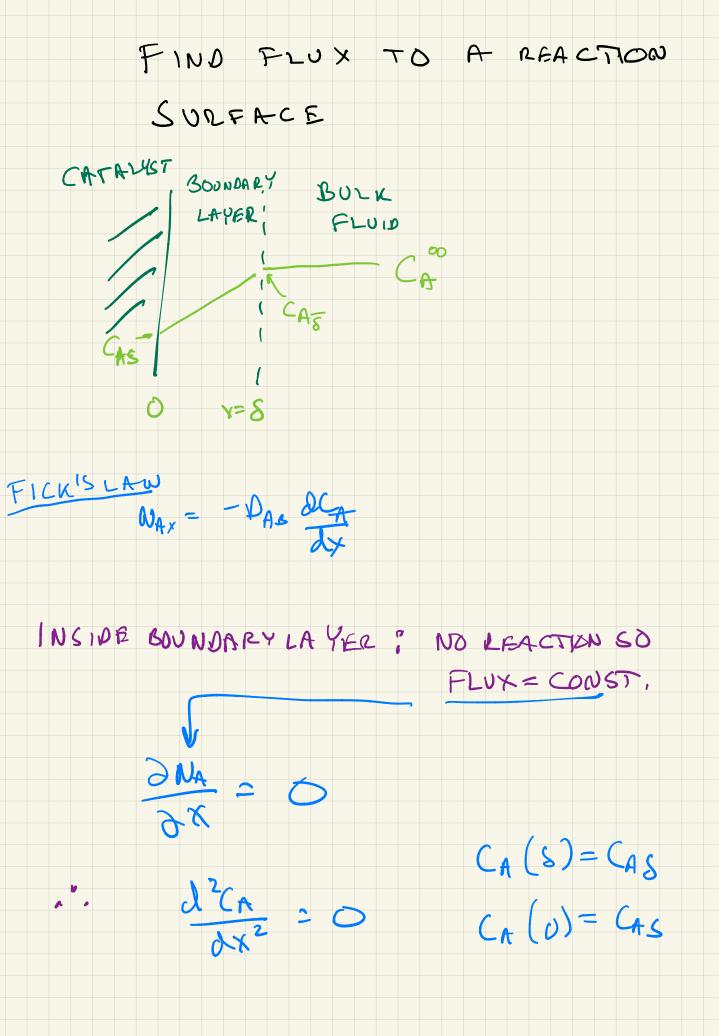
INJERNAL RESISTANCE

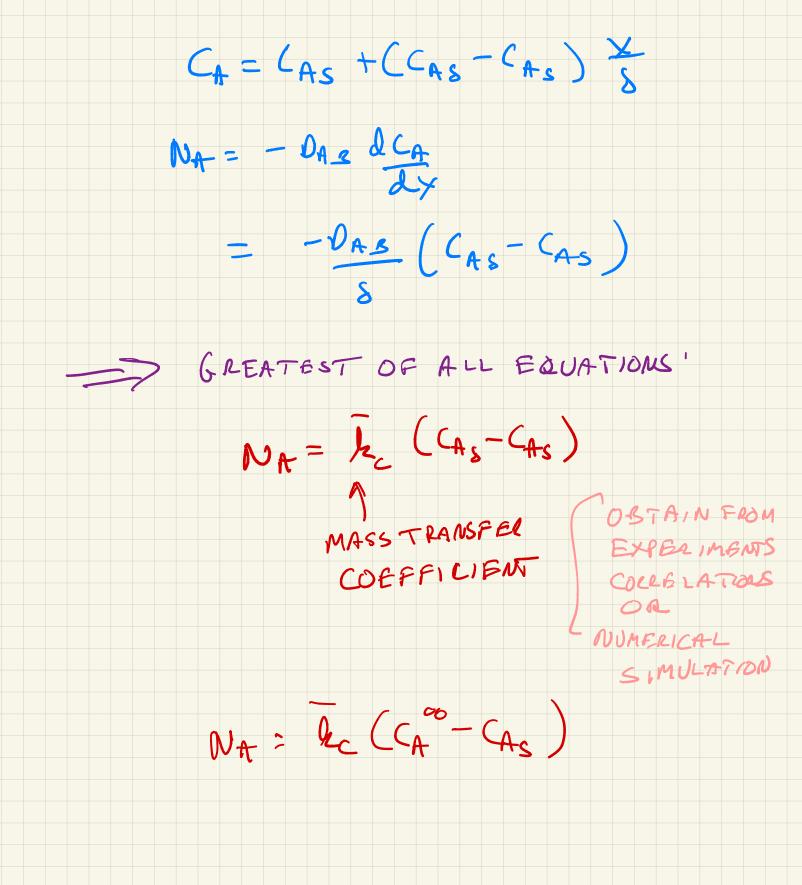
THE BOUNDARY LAYER IS NOT

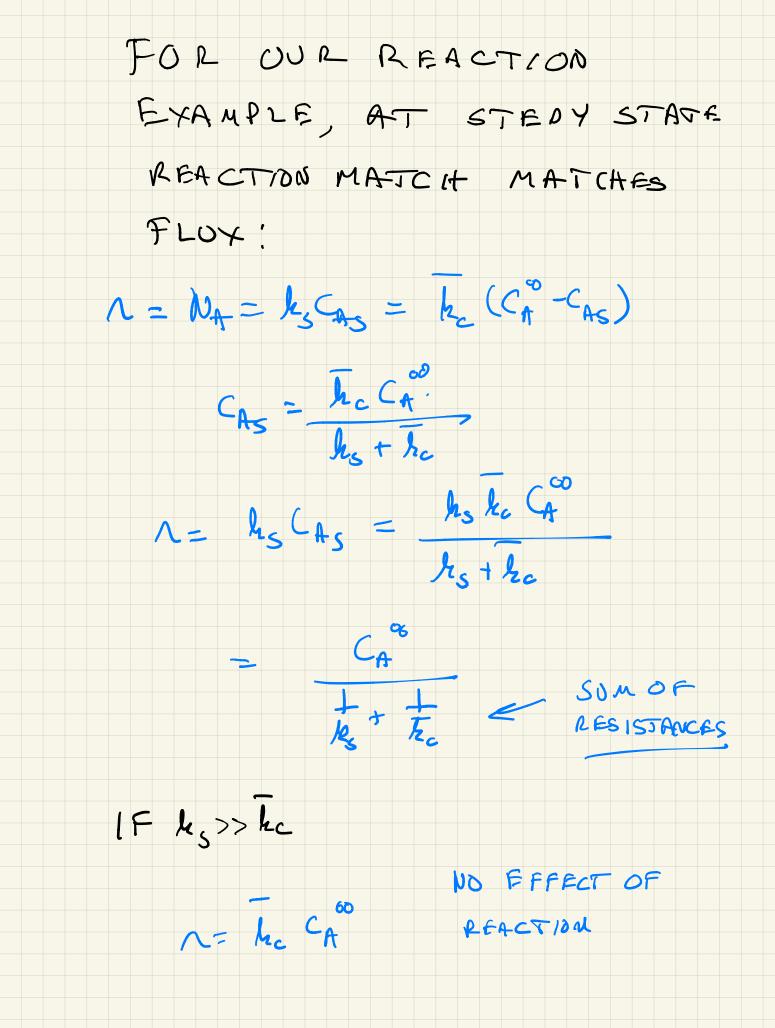
USUALLY STAGNANT.

BUT IT IS INSTRUCTIVE TO REVIEW

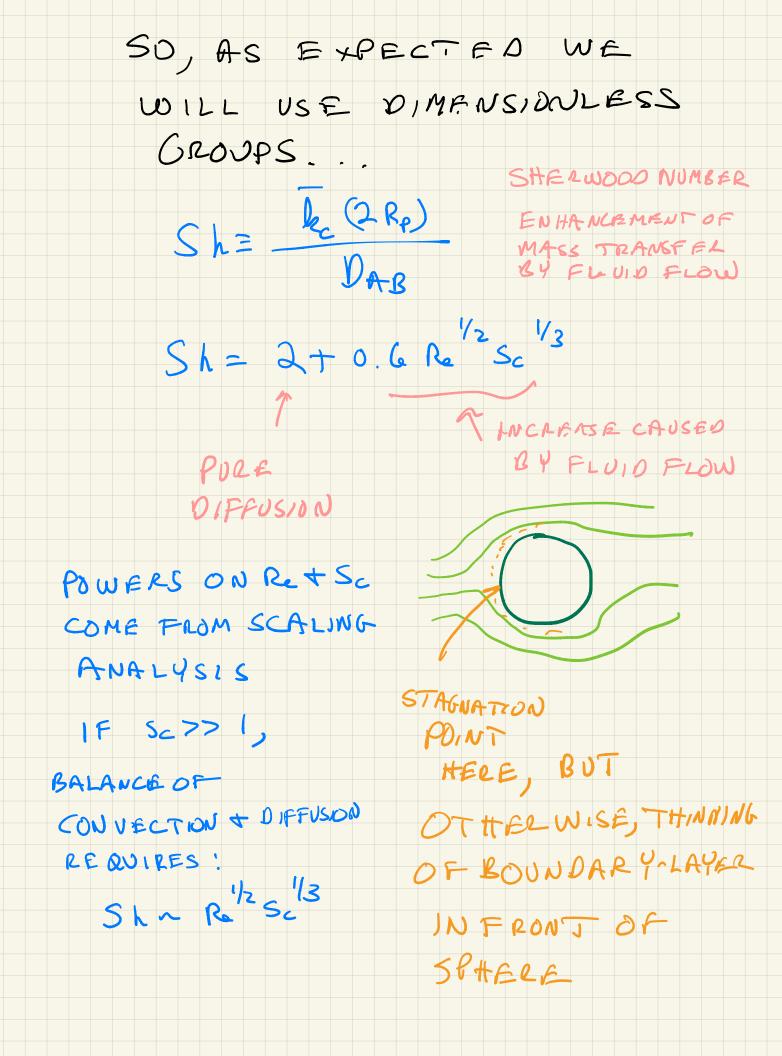

DIF FUSION


STEFAN- MAXWELL ER.

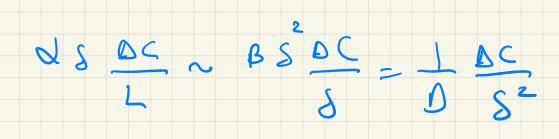

 $\nabla x_i = \underbrace{\underbrace{\sum_{j=1}^{m} (X_i N_j - X_j N_i)}_{j \neq i}}_{j \neq i}$


 $\nabla C_A = \int \left(\chi_A N_B - \chi_B N_A \right)$

IF JUST 2 COMPONENTS



	V) (T	FRF 1	00 "' Jrc's" (0)	me fro,
) RRE	LATIOC	VS FROM R.E. "MASS TRANG OPERATO	TREYBAL SFE2 NS ¹¹
Perne	endicular Re =	= 400-25 000 k		
o sin	gle Sc =	$= 400-23\ 000$ $\frac{\pi}{0}$	$G_{G_M}^{GP_t}$ Sc ^{0.56} = 0.281 Re' ^{0.4}	5
ylind	IC .	$= 0.1 - 10^{5}$ = 0.7 - 1500 N	$u = (0.35 + 0.34 \text{ Re}'^{0.5} + 0.15 \text{ Re}'^{0.58}) \text{ Pr}^{0.3}$	16, 21, 42
Past s pher	2/1		$h = Sh_0 + 0.347 (Re'' Sc^{0.5})^{0.62}$ $h_0 = \begin{cases} 2.0 + 0.569 (Gr_D Sc)^{0.250} & Gr_D Sc < 2.0 + 0.0254 (Gr_D Sc)^{0.333} Sc^{0.244} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.333} Sc^{0.333} Sc^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.333} Sc^{0.333} Sc^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.333} Sc^{0.333} Sc^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.333} Sc^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.333} Sc^{0.333} & Sc^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.333} & Sc^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.333} & Sc^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.344} & Gr_D Sc > 2.0 + 0.0254 (Gr_D Sc)^{0.344} & G$	$\left\{\begin{array}{c} 10^8\\ 10^8\end{array}\right\}$ 55
	ough fixed Re"	= 90-4000	2.06	
beds	s of pellets§ Sc =		$j_{H} = j_{H} = \frac{2.06}{\varepsilon} \operatorname{Re}^{"-0.575}$	a starte a s
		$j_D = 5000 - 10\ 300$ = 0.6 j_D	$j_0 = 0.95 j_H = \frac{20.4}{\varepsilon} \operatorname{Re}^{n} e^{-0.815}$	4,
		$j_{p} = 0.0016 - 55 j_{p}$	$h_0 = \frac{1.09}{\epsilon} \operatorname{Re}^{n/2/3}$	23, 64
	<u></u>	- 100 10 000	6	
		e'' = 5 - 1500 in	$r = \frac{0.250}{Re^{n-0.31}}$	
+ 41	Sc	- 100-70 000	$\rho = \frac{0.250}{\varepsilon} \operatorname{Re}^{\prime\prime - 0.31}$	con Canar
ly, flu ass-tr ‡ M & Fo	Sc verage mass-trans uid properties are ransfer analogy is	sfer coefficients throughou e evaluated at the average s valid throughout.	$p_{p} = \frac{0.250}{\varepsilon} \operatorname{Re}^{n'=0.31}$ ut, for constant solute concentrations at the phase surfic conditions between the phase surface and the bulk fluid <i>i</i> but are reasonably well represented by setting $j_{D} = j_{H}$ is $a = 6(1 - \varepsilon)/d$ where <i>q</i> is the specific solid surface, so Equation	I. The heat-
ly, flu ass-tr ‡ M & Fo	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data for fixed beds the	sfer coefficients throughou e evaluated at the average s valid throughout. for this case scatter badly relation between s and d	ut, for constant solute concentrations at the phase surface and the bulk fluid conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_H$ is $a = 6(1 - e)/d$, where a is the specific solid surface. Set Equation	l. The heat-
ly, flu ass-tr ‡ M & Fo	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the uid motion	sfer coefficients throughou e evaluated at the average of s valid throughout. for this case scatter badly relation between s and d Range of conditions	ut, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid by but are reasonably well represented by setting $j_D = j_H$ is $a = 6(1 - e)/d$, where q is the specific solid surface, the Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{0.83} Sc ^{1/3}	t. The heat-
ly, flu ass-tr ‡ M & Fo	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the uid motion Inside circu-	sfer coefficients throughout evaluated at the average s valid throughout. for this case scatter badly relation between s and d Range of conditions $Re = 4000-60\ 000$ $Sc = 0.6-3000$ $Re = 10\ 000 - 400\ 000$	at, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_{H'}$ is $a = 6(1 - e)/d$, where a is the specific solid surface. If Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} $j_D = 0.0149 \text{ Re}^{-0.12}$	L. The heat-
ly, flu ass-tr ‡ M 8 Fo Flu 1.	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the uid motion Inside circu- lar pipes	sfer coefficients throughout evaluated at the average svalid throughout. for this case scatter badly relation between s and d Range of conditions $Re = 4000-60\ 000$ Sc = 0.6-3000 $Re = 10\ 000 - 400\ 000$ Sc > 100	ut, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid by but are reasonably well represented by setting $j_D = j_H$ is $a = 6(1 - e)/d$, where q is the specific solid surface, the Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{0.83} Sc ^{1/3}	I. The heat-
ly, flu ass-tr ‡ M & Fo	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the uid motion Inside circu-	sfer coefficients throughout evaluated at the average s valid throughout. for this case scatter badly relation between s and d Range of conditions $Re = 4000-60\ 000$ $Sc = 0.6-3000$ $Re = 10\ 000 - 400\ 000$	at, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_{H'}$ is $a = 6(1 - e)/d$, where a is the specific solid surface. If Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} $j_D = 0.0149 \text{ Re}^{-0.12}$	L. The heat-
ly, flu ass-tr \$ M 8 Fo Flu 1.	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the did motion Inside circu- lar pipes Unconfined flow parallel	sfer coefficients throughout evaluated at the average s valid throughout. for this case scatter badly relation between c and d Range of conditions $Re = 4000-60\ 000$ Sc = 0.6-3000 $Re = 10\ 000 - 400\ 000$ Sc > 100 Transfer begins at leading edge	at, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_H$ is $a = 6(1 - e)/d$, where a is the specific solid surface. If Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} Sh = 0.023 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{0.88} Sc ^{1/3}	I. The heat-
ly, flu ass-tr \$ M 8 Fo Flu 1.	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the did motion Inside circu- lar pipes Unconfined flow parallel	sfer coefficients throughout evaluated at the average of svalid throughout. for this case scatter badly relation between <i>s</i> and <i>d</i> . Range of conditions $Re = 4000-60\ 000$ $Sc = 0.6-3000$ $Re = 10\ 000 - 400\ 000$ $Sc > 100$ $Transfer begins atleading edgeRe_x < 50\ 000Re_x = 5 \times 10^5 - 3 \times 10^7$	It, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_H$ is $q = 6(1 - e)/d$ where q is the specific solid surface, so Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{0.88} Sc ^{1/3} $j_D = 0.664 \text{ Re}_x^{-0.5}$ Nu = 0.037 Re ^{0.8} Pr ^{0.43} $\left(\frac{\text{Pr}_0}{\text{Pr}_i}\right)^{0.25}$	I. The heat-
ly, flu ass-tr \$ M 8 Fo Flu 1.	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the did motion Inside circu- lar pipes Unconfined flow parallel	sfer coefficients throughou: evaluated at the average of svalid throughout. for this case scatter badly relation between <i>e</i> and <i>d</i> . Range of conditions $Re = 4000-60\ 000$ $Sc = 0.6-3000$ $Re = 10\ 000 - 400\ 000$ $Sc > 100$ $Transfer begins atleading edgeRe_x < 50\ 000Re_x = 5 \times 10^5 - 3 \times 10^7Pr = 0.7 - 380$	at, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_H$ is $a = 6(1 - e)/d$, where a is the specific solid surface. If Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} Sh = 0.023 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{0.88} Sc ^{1/3} $j_D = 0.664 \text{ Re}_x^{-0.5}$ Nu = 0.037 Re ^{0.8} Pr ^{0.43} $\left(\frac{\text{Pr}_0}{\text{Pr}_i}\right)^{0.25}$ Between above and	L. The heat-
ly, fh ly, fh ass-tr \$ M \$ F, Flu 1. 2.	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the did motion Inside circu- lar pipes Unconfined flow parallel to flat plates‡	sfer coefficients throughout evaluated at the average is valid throughout. for this case scatter badly relation between c and d Range of conditions $Re = 4000-60\ 000$ $Sc = 0.6-3000$ $Re = 10\ 000 - 400\ 000$ $Sc > 100$ $Transfer begins atleading edgeRe_x < 50\ 000Re_x = 5 \times 10^5 - 3 \times 10^7Pr = 0.7 - 380Re_x = 2 \times 10^4 - 5 \times 10^5$	It, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_H$ is $q = 6(1 - e)/d$ where q is the specific solid surface, so Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{0.88} Sc ^{1/3} $j_D = 0.664 \text{ Re}_x^{-0.5}$ Nu = 0.037 Re ^{0.8} Pr ^{0.43} $\left(\frac{\text{Pr}_0}{\text{Pr}_i}\right)^{0.25}$	L. The heat-
ly, flu ass-tr \$ M 8 Fo Flu 1.	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data or fixed beds the did motion Inside circu- lar pipes Unconfined flow parallel	sfer coefficients throughou: evaluated at the average is valid throughout. for this case scatter badly relation between c and d Range of conditions $Re = 4000-60\ 000$ $Sc = 0.6-3000$ $Re = 10\ 000 - 400\ 000$ $Sc > 100$ $Transfer begins atleading edgeRe_x < 50\ 000Re_x = 5 \times 10^5 - 3 \times 10^7Pr = 0.7 - 380Re_x = 2 \times 10^4 - 5 \times 10^5Pr = 0.7 - 380$	at, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_H$ is $a = 6(1 - e)/d$, where a is the specific solid surface. If Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} Sh = 0.023 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{0.88} Sc ^{1/3} $j_D = 0.664 \text{ Re}_x^{-0.5}$ Nu = 0.037 Re ^{0.8} Pr ^{0.43} $\left(\frac{\text{Pr}_0}{\text{Pr}_i}\right)^{0.25}$ Between above and	L. The heat-
ly, fh ly, fh ass-tr \$ M \$ F, Flu 1. 2.	Sc verage mass-trans uid properties are ransfer analogy is fass-transfer data for fixed beds, the uid motion Inside circu- lar pipes Unconfined flow parallel to flat plates‡ Confined gas flow parallel to a flat plate	sfer coefficients throughout evaluated at the average is valid throughout. for this case scatter badly relation between c and d Range of conditions $Re = 4000-60\ 000$ $Sc = 0.6-3000$ $Re = 10\ 000 - 400\ 000$ $Sc > 100$ $Transfer begins atleading edgeRe_x < 50\ 000Re_x = 5 \times 10^5 - 3 \times 10^7Pr = 0.7 - 380Re_x = 2 \times 10^4 - 5 \times 10^5Pr = 0.7 - 380Re_e = 2600 - 22\ 000\frac{4\Gamma}{\mu} = 0 - 1200,$	at, for constant solute concentrations at the phase surface conditions between the phase surface and the bulk fluid but are reasonably well represented by setting $j_D = j_H$ is $a = 6(1 - e)/d$ where a is the specific solid surface, set Equation $j_D = 0.023 \text{ Re}^{-0.17}$ Sh = 0.023 Re ^{-0.17} Sh = 0.023 Re ^{-0.12} Sh = 0.0149 Re ^{-0.12} Sh = 0.0149 Re ^{0.88} Sc ^{1/3} $j_D = 0.664 \text{ Re}_x^{-0.5}$ Nu = 0.037 Re ^{0.8} Pr ^{0.43} $\left(\frac{\text{Pr}_0}{\text{Pr}_i}\right)^{0.25}$ Between above and Nu = 0.0027 Re _x Pr ^{0.43} $\left(\frac{\text{Pr}_0}{\text{Pr}_i}\right)^{0.25}$	I. The heat- surface per R 41 52 44 32 65



$U_{x} \frac{\partial c}{\partial x} + U_{y} \frac{\partial c}{\partial y} = 0 \frac{\partial^{2} c}{\partial y^{2}}$

IF SC >> 1 (USUAL CASE FOR LIQUIDS)

INSIDE BOUNDARYLAYER

 $u_x = dy$, $u_y = By^2 (FROM)$

A METHOD OF CORRELATING FORCED CONVECTION HEAT TRANSFER DATA AND A COMPARISON WITH FLUID FRICTION ¹

By ALLAN P. COLBURN

Ra =

040

8 DAB

Ug(2Rp)

ABSTRACT

A general method for the correlation of forced convection heat transfer data is proposed, which consists in plotting, against the Reynolds number, a dimensionless group representing the experimentally measured data from which film heat transfer coefficients would be calculated, namely, $[(t_1 - t_2)/\Delta t_m](S/A)$, or its equivalent, h/cG, multiplied by the two-thirds power of the group, $(c\mu/k)$. Data are cited from the literature which show that the resulting plots of heat transfer data for flow parallel to plane surfaces and for fully turbulent flow inside tubes, coincide (when the properties are taken at the "film" temperature) with the best data on fluid friction plotted in the customary manner, as the friction factor,

$$\frac{1}{2}f = \frac{\Delta Pg}{\rho u^2}\frac{S}{A} = \frac{R}{\rho u^2},$$

MOMENTUM

MASS

INERTIA FORCES

WRITE ABDUT "1" FACTORS

VISCOK FORCES

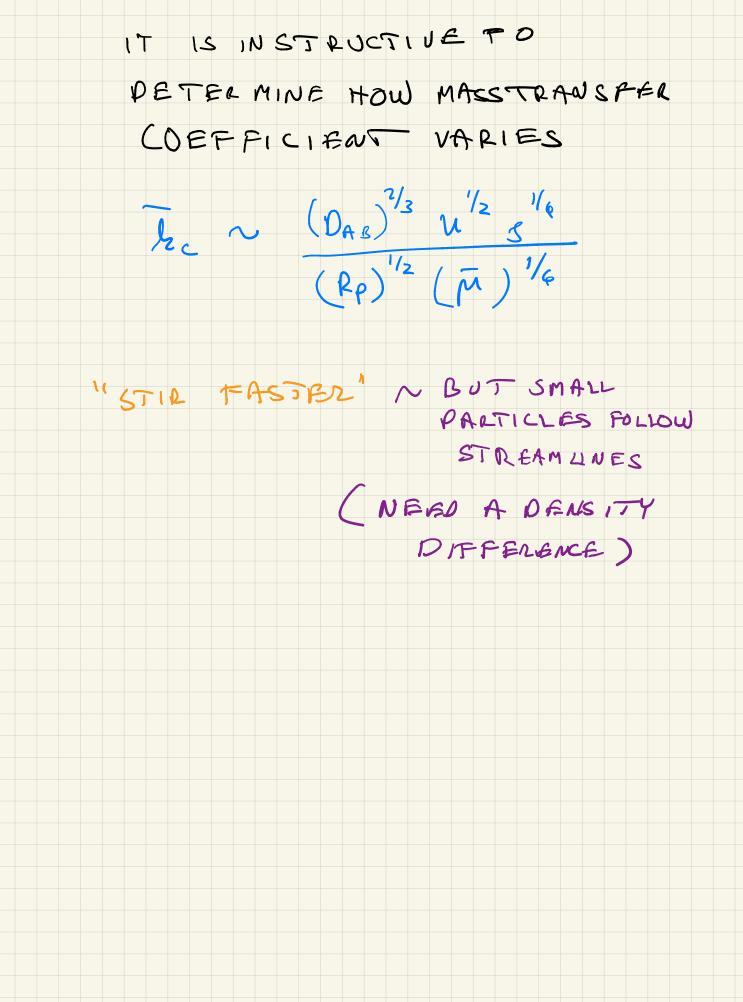
FRICTION FACTOR

SO FOR TURBULENT FLOW, IF YOU

KNOW & YOU

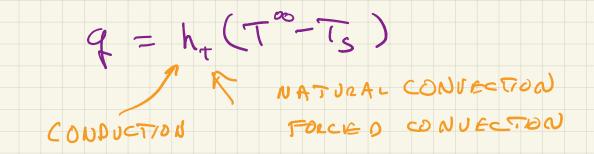
KNOW J.

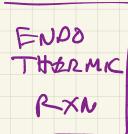

TRATS.

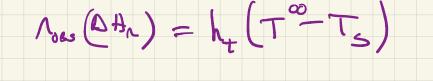

AM. NSS

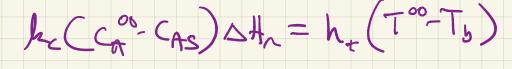
CHEM ENG

VIFFUSIUITY


DIFFUSIVITY


HEAT TRANSFER IS ANALOGOUS


"GREATEST" EQUATION FOR HEATTRANSFER



REACTION RATE WITH DHANN

INCLUDED

ENERGY BALANCE AT STEADY STATE. INTERNAL MASS TRANSFER RESISTANCE!

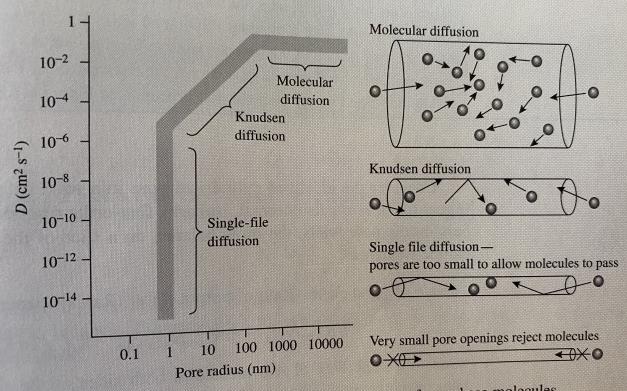
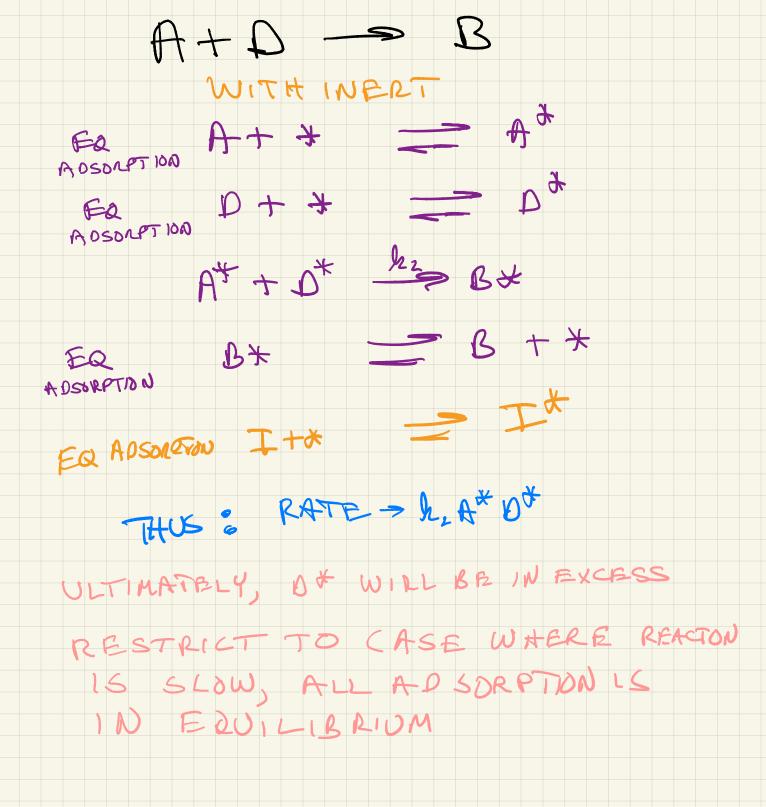
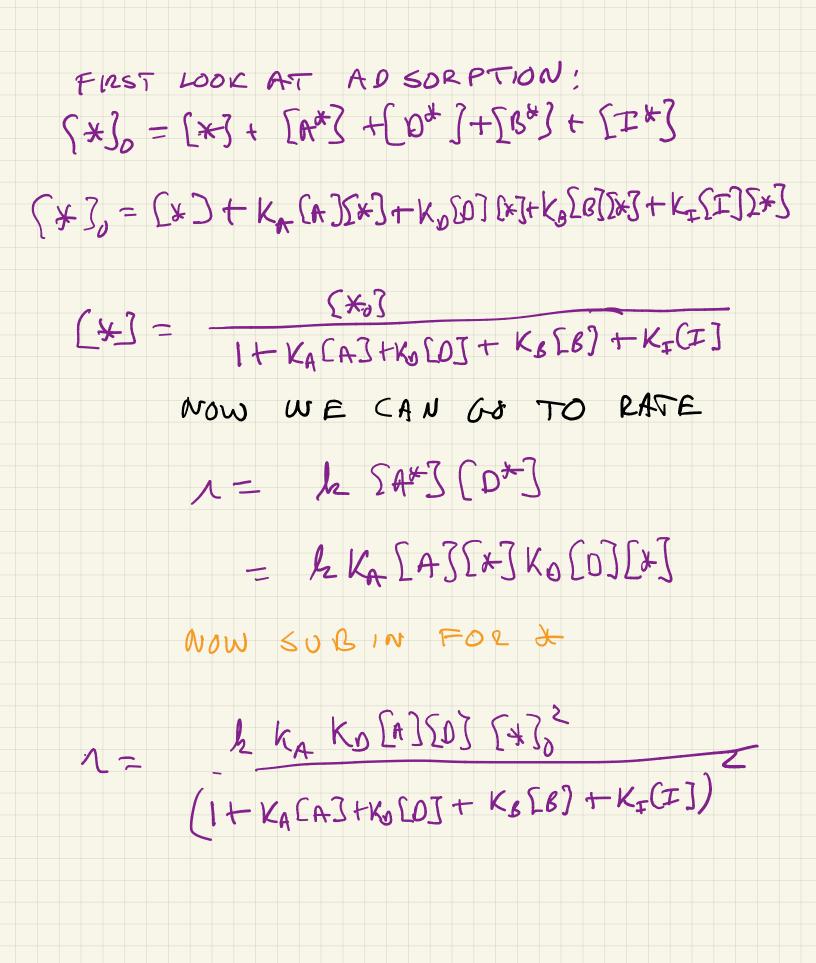
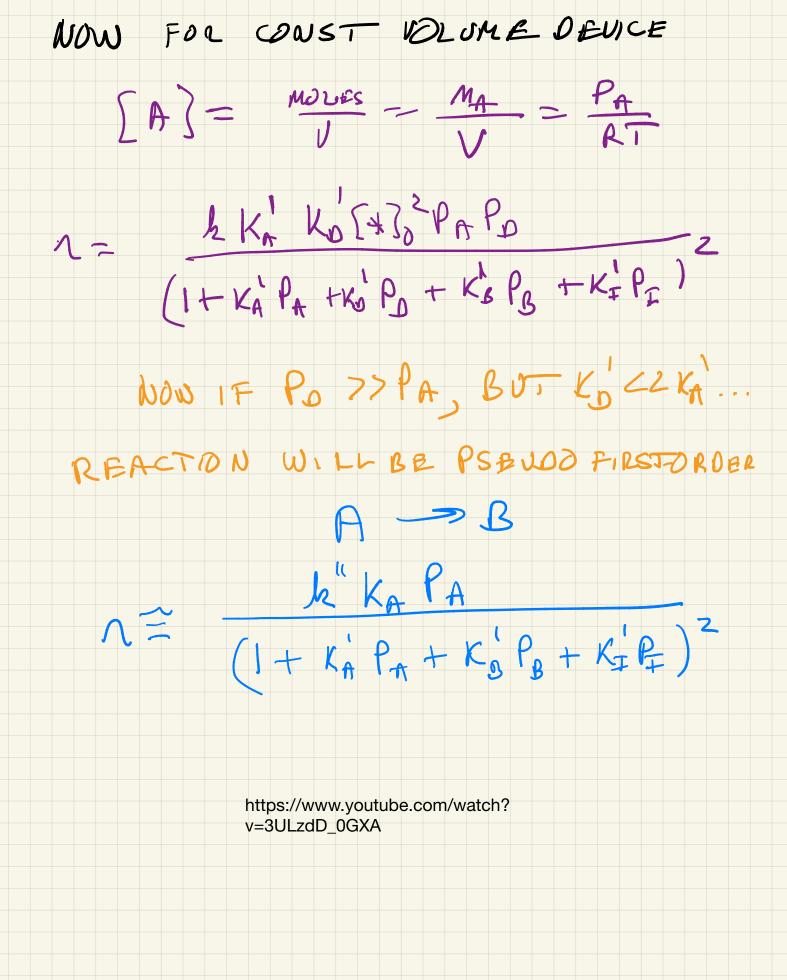


Figure 6.3.1 | Influence of pore size on diffusivity of gas-phase molecules.


a 131 CO with in the denominator suggest?


7. For the reaction of A to form B over a solid catalyst, the reaction rate has the form:


$$\mathbf{r} = \frac{kK_AP_A}{(1 + K_AP_A + K_BP_B)^2}$$

However, there is a large excess of inert in the reactant stream that is known to readily adsorb on the catalyst surface. How will this affect the reaction order with respect to A?

8. G. Thodor and C. F. Stutzman [Ind. Eng. Chem., 50 (1958) 413] investigated the following reaction over a zirconium oxide silico col actalant in the

