CBE 40445 9/16/20

HETERO GENEOUS CATALYSIS

SOME REVIEW

		-DH = - 92 KUIMOLE AT RXW TEMP
Process	Catalyst	Equation
Making ammonia	Iron	$N_2(g) + 3H_2(g) \implies 2NH_3(g)$
Making synthesis gas (carbon monoxide and hydrogen)	Nickel	$CH_4(g) + H_2O(g) \implies CO(g) + 3H_2(g)$
Catalytic cracking of gas oil	Zeolite	Produces: a gas (e.g. ethene, propene) a liquid (e.g.petrol) a residue (e.g. fuel oil)
Reforming of naphtha	Platinum and rhenium on alumina	$CH_3CH_2CH_2CH_2CH_2CH_3(g) \longrightarrow (g) + H_2(g)$
Making epoxyethane	Silver on alumina	$C_2H_4(g) + \frac{1}{2}O_2(g) \longrightarrow H_2C \longrightarrow CH_2(g)$
Making sulfuric acid	Vanadium(V) oxide on silica	$SO_2(g) + \frac{1}{2}O_2(g) \longrightarrow SO_3(g)$
Making nitric acid	Platinum and rhodium	$4NH_3(g) + 5O_2(g) \longrightarrow 4NO(g) + 6H_2O(g)$

Table 1 Examples of industrial processes using heterogeneous catalysis.

Internal direct cooling reactor, IDCR) (Adiabatic quench cooling reactor, AQCR) (Adiabatic indirect cooling reactor, AICR)

CATALYTIC CRACKING

Single crystal surfaces are associated with planes in the unit and

EXACT SURFACE STRUCTURE MATTERS

Figure 5.1.5 | (a) Rhodium metal particles supported on silica carrier. (b) High-resolution electron micrograph shows how small supported Rh crystallites expose low-index faces. (Top photo micrograph shows how small supported from "Modeling of heterogeneous catalysts using courtesy of A. K. Datye. Bottom photo from "Modeling in *Catalysis* vol. 13:131 are in *Topics in Catalysis* vol. 13:131 are in *Topics* vol. 13:131 are

(a)

A SOLID SURFACE

THE REACTANT IS OFTEN

AGAS, COULD BEALIQUE

IN A SOLUENT, BUT IN

EITHER CASE A NELESSARY

STEP IS ADSORPTION ONTO

THE SULFACE

THE ADSORPTION PROBABLY HAS TO BE TO A SPECIFIC "SITE"

HENCE WE NEED NOTATION

" * " ACTIVE 6 ME

AD SORPTION OF A GAS ONTO A SURFACE CAN BE A) PHYSICAL ~ CONDENSATION ~ "PHYSISORPTION " OH OCCURS "ANYWHERE" ON SOLLD

B) CHEMICAL ~ AHRINO

"CHEMISDEPTION"

OCCURS AT SPECIFIC SITES

SIMPLEST MODEL FOR ADSORPTION "LANG MUIR" · PHYSICAL ADSOLPTION OF • I LAYER COVERAGE · I DENTICAL SIJES THAT DON'T INTERACT · EQUILIBRIUM BETWEEN GAS PHASE AN CONDENSED COMPONENT ON SURFACE SHOWS HOW TEMPERATURE **V** AFFECTS ADSDEBED AMOUNT OFTEN WORKS WHEN YOU 0 MIGHT NOT EXPECT BUJII

· PERILS IN STRETCHING TOD

FARII

WE HAVE FOUND THAT CHEMICAL COMPLEXATION OF GASFOUS COJ WITH 'DESIGNER' LONIC LIQUIDS FOULDWS LANGMUL

Technology Fundamentals

- Ionic liquids are pure salts that are liquid around ambient temperature
 Not simple salts like alkali halides
- · Many favorable properties
 - Nonvolatile
 - Anhydrous
 - High thermal stability
 - Huge chemical diversity
 - High intrinsic CO₂ solubility and selectivity

Examples of cations

Examples of anions

AHA – aprotic heterocyclic anions

approaches 1:1 IL to CO₂ binding ratio

MORE GENERAL AD SOLFTION MODELS EXIST

BE, T. BRUNAVER, EMMET, TELLER MULTI LAYER

GAS FRESSUES

Figure 7–24 Adsorption equilibrium apparatus to determine adsorption isotherms and surface areas of catalysts. From the saturation of a sample of known weight, the surface area can be determined if the area occupied by a molecule is known. (Adsorbed molecules are dots.)

VOLUME OF GAS

-1 P= Vm Po CV, SAT. PRESS FITTED VOLUME OFGAS CONSTANT THAT GIVES A MONOLAYER GET C, Vm FROM FT OF DATA

 $= \frac{l_{R_3} K_{adsn} K_{adsn} \left[\forall J_o [A] \right] B}{(1 + K_{adsn} [A] + K_{adsn} SBJ)^2}$ 2 &'S AREINVOLUED