FUNDAMENTALS OF A CARBON CAPTURE PROCESS: UNIT OPERATIONS

Mark J. McCready Professor of Chemical and Biomolecular Engineering University of Notre Dame Indiana, USA July 24, 2017

University of Notre Dame, USA

GOALS OFTHESE LECTURES

- Understand the overall process and the key phenomena and equipment
 - Flow in pipes (momentum transfer)
 - pipes, pumps, tanks, fittings and meters
 - Heat transfer between fluids (energy transport)
 - heat exchangers, boilers and condensers
 - Gas absorption and stripping. (mass transfer)
 - Packed column absorber and stripper

PLAN FOR TODAY

- Overview of CO₂ absorption
 - Motivation and need for the process
 - How it works
- Description of fundamental processes that occur
 - fluid flow, heat transfer, mass transfer
- Part I: Fluid mechanics and process fluid flows.

CARBON DIOXIDE ABSORPTION FROM A GAS MIXTURE

- Why do: To get "pure" CO2
- Reversible, cyclical process:
 - CO2 (selectively) dissolves in (lean) MEA solution in the absorber
 - reversible chemical reaction greatly increases solvent capacity and selectivity
 - MEA solution is pumped to the "stripper" where heat (from steam) is used to reduce the CO2 solubility (and reverse the reaction) so that CO2 (now) without N2 will come off.
- Usually need to hit a "spec" on CO2 emitted.
- Need efficient contacting of gas and liquid
- CO2 capacity per mass of solvent significantly influences the cost
- Energy to regenerate influences cost

PROCESS OF INTEREST

Fig. 1. Schematic diagram of absorption section for CO₂ scrubbing with MEA and DGA solutions [10].

University of Notre Dame, USA

WHY SCRUB CO2?

- Natural gas clean up
 - Very large volumes of gas, low concentration of CO2 (but at elevated pressure)
- Production of hydrogen (also at some elevated pressure)
 - $C + 2H_2O \longrightarrow CO_2 + 2H_2$
 - $CH_4 + H_2O \longrightarrow CO + 2H_2$
 - $CO + H_2O \longrightarrow CO_2 + H_2$
- Life support (1 ATM)
- Clean up of combustion gases (~I ATM coming in.)
 - ~3 mol% (CO2) from natural gas, 10-15% from coal

HAVE TO HAVE A GOOD REASON...

University of Notre Dame, USA

25% MORE ENERGY IS NEEDED WITH SEQUESTRATION

Notes: (a) GHGs (CO₂, CH₄, and N₂O) expressed in million tonnes CO₂-equivalents/yr at 100% capacity; (b) Change in GWP and change in fossil energy consumption compared to reference

chemeprof.com

OTHER APPLICATIONS FOR CO2 SCRUBBING

HYDROGEN PRODUCTION

University of Notre Dame, USA

METHODS FOR CO2 SEPARATION

- Membranes
- Absorption into basic solutions (carbonate, hydroxides)

FIGURE 4: Different technologies for CO₂ separation [29].

University of Notre Dame, USA

COMPARING SEPARATION METHODS

University of Notre Dame, USA

PROCESS OF INTEREST

Fig. 1. Schematic diagram of absorption section for CO₂ scrubbing with MEA and DGA solutions [10].

University of Notre Dame, USA

SIGNIFICANT COMPRESSION IS NEEDED

Figure 5.1-3 Pressure-enthalpy diagram for methane. (*Source:* W. C. Reynolds, *Thermodynamic Properties in SI*, Department of Mechanical Engineering, Stanford University, Stanford, CA, 1979. Used with permission.)

University of Notre Dame, USA

PILOT PLANT FACILITY

SCHEMATIC OF IMPERIAL PILOT PLANT

PILOT PLANT

THE TWO COLUMNS

STUDENTS WORKING IN PLANT

PROFESSOR SADDAWI INSPECTS THE REBOILER!

CONTROL ROOM

LOTS OF SENSORS FOR "CONTROL"

PROCESS DIAGRAM

N2 600P

University of Notre Dame, USA

SOLVENT

Monoethanolamine (15% in water)

monoethanol-amine (MEA)

•	Reactions	with	CO_2	and	water
---	-----------	------	--------	-----	-------

$2 H_2 O \rightleftharpoons OH^- + H_3 O^+$	(4.1)
$CO_2 + 2H_2O \implies HCO_3 + H_3O^+$	(4.2)
$HCO_3^- + H_2O \implies CO_3^{2-} + H_3O^+$	(4.3)
$RNH_3^+ + H_2O \implies RNH_2 + H_3O^+$	(4.4)
$RNHCOO^- + H_2O \implies RNH_2 + HCO_3^-$	(4.5)

chemeprof.com

Table 1 • Typical Properties of DOW Ethanolamines

	Monoethanolamine	Diethanolamine	Triethanolamine
Formula Molecular Weight	H ₂ NCH ₂ CH ₂ OH 61.08	HN(CH ₂ CH ₂ OH) ₂ 105.14	N(CH ₂ CH ₂ OH) ₃ 149.19
Apparent Sp. Gr. at 20/20°C ΔSp. Gr./Δt at 10 to 80°C	1.017 0.00080	1.092 ^(a) 0.00065 ^(b)	1.126 ^(f) 0.00059
Boiling Point at 760 mm Hg, °C at 50mm Hg, °C at 10mm Hg, °C	170.4 101 71	268 ^(c) 182 150	335 ^(c) 245 ^(c) 205
Vapor Pressure at 20°C, mm Hg	<1	<0.01	<0.001
Freezing Point, °C(°F) Absolute Viscosity at 20°C, cP at 30°C, cP	10.5 (50.9) 24.1 16.2	28.0 (82.4) — 380	21.6 (70.9) ^(e) 921 ^(f) 404
Solubility at 20°C, % by wt In Water Water In	Complete Complete	Complete ^(f)	Complete ^(#) Complete ^(#)
Solubility in Organic Liquids at 25°C, % by wt Acetone Benzene Carbon Tetrachloride Ethyl Ether Heptane Methanol	Complete 0.6 0.1 0.7 0.1 Complete	Complete ^(#) 0.03 0.01 0.5 0.03 Complete ^(#)	Complete 2 Complete 2 <0.03 Complete
Surface Tension, dynes/cm Refractive Index, n_D^{20} $\Delta N_D/\Delta t$ at 20 to 40°C per °C	48.3 ^(d) 1.4539 0.00034	48.5 ^(g) 1.4747 ^(g) 0.00027 ^(b)	48.9 ^(d) 1.4852 ^(f) 0.00020
Flash Point, °C (°F)	96 (205) ^(h)	191 (375) ^(h)	208 (407) ^(h)
(a) At 30/20°C (b) At 35 to 65°C (c) Extrapolated (decomposes) (d) At 25°C	(e) (f) (g) (h)	Supercools easily Supercooled liquid At 30°C Determined by ASTN using the Pensky-Ma	И Method D 93, artens Closed Cup

DATA FOR CO2 INTO MEA

14-10

GAS ABS(

Table 14-37A. Smoothed Values for Solubility of Carbon Dioxide in 15.3 Weight Per Cent Monoethanolamine

Partial pressure	Moles carbon dioxide per mole amine					
CO2, mm. Hg	40°C.	60°C.]	80°C.	100°C.	120°C.	140°C.
1 5 10 30 50 70 100 200 300 400 500 600 760 1000 2000 3000 5000	40 C. 0.383 .438 .471 .518 .542 .558 .576 .614 .639 .657 .672 .686 .705 .727 	0.412 .459 .482 .498 .516 .552 .574 .591 .605 .615 .631 .650 .702	0.379 .405 .422 .442 .442 .481 .505 .523 .538 .550 .566 .584 .637 .669 .712	0.096 .152 .194 .265 .299 .322 .347 .393 .423 .442 .458 .472 .489 .509 .562 .596 .641	0.200 .227 .281 .314 .336 .355 .370 .390 .413 .476 .513 .562	0.109 .162 .194 .219 .237 .254 .275 .300 .366 .408 .408

Table 14-36A. Equilibrium Data for Monoethanolamine Solutions

Temp., °C.	Normality of amine	Partia' pressure of CO ₂ mm. Hg	Liquid concentra-
0.0 .0 .0	0.5 .5 .5	745.8 256.3 45.3 10.6	1.110 0.990 .817
25.0 25.0 25.0 25.0 25.0 25.0	****	735.7 251.8 99.6 44.2 10.8	-0/5 1.004 0.886 .795 .720 .700
50.0 50.0 50.0	.5 .5 .5	661.3 228.3 40.1	-880 -757
75.0 75.0 75.0	.5 .5 .5	475.8 130.3 50.0	.596 .685 .584
0.0 .0 .0 .0	2.0 2.0 2.0 2.0 2.0	754.4 206.1 79.4 11.4	-900 -776 -718 -601
25.0 25.0 25.0 25.0 25.0	2.0 2.0 2.0 2.0 2.0 2.0	736.4 252.2 98.6 44.2 10.6	.795 .697 .623 .589 .527
50.0 50.0 50.0 50.0	2.0 2.0 2.0 2.0	668.2 183.1 70.9 10.1	.698 .607 .556 .489
75.0 75.0 75.0	2.0 2.0 2.0	477.0 130.6 51.1	.560 .474 .430

chemeprof.com

PACKED TOWER FOR GAS ABSORPTION

Figure 6.28 Some random tower packings: (a) Raschig rings, (b) Lessing ring, (c) Berl saddle (courtesy of Maurice A. Knight), (e) Intalox saddle (Chemical Processing Norton Co.), (f) Tellerette (Ceilcote Company, Inc.), and (g) pall ring (Chemical P. Division, Norton Co.).

350 m²/m³

Figure 6.29 Regular, or stacked, packings: (a) Raschig rings, stacked staggered (top view), (b) double spiral ring (*Chemical Processing Products Division, Norton Co.*), (c) section through expanded-metal-lath packing. (d) wood grids.

University of Notre Dame, USA

RANDOM PACKING IN STRIPPING COLUMN

HEAT EXCHANGERS

chemeprof.com

IMPERIAL HEAT EXCHANGERS

chemeprof.com

PUMPS

GAS COMPRESSOR/BLOWER

PROCESS DIAGRAM

N2 600P

University of Notre Dame, USA

CARBON DIOXIDE ABSORPTION FROM A GAS MIXTURE

- Why do: To get "pure" CO2
- Reversible, cyclical process:
 - CO2 (selectively) dissolves in (lean) MEA solution in the absorber
 - reversible chemical reaction greatly increases solvent capacity and selectivity
 - MEA solution is pumped to the "stripper" where heat (from steam) is used to reduce the CO2 solubility (and reverse the reaction) so that CO2 (now) without N2 will come off.
- Usually need to hit a "spec" on CO2 emitted.
- Need efficient contacting of gas and liquid
- CO2 capacity per mass of solvent significantly influences the cost
- Energy to regenerate influences cost

