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IMPERIAL HEAT EXCHANGERS
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IMPERIAL HEAT EXCHANGERS
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PROFESSOR SADDAWI INSPECTS THE REBOILER!

H100
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SPIRAL HEAT EXCHANGER

C400
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FLOW SHEET HEAT EXCHANGERS
• Regeneration heat (added to bottom of stripping column)

• “reboiler”

• boils the MEA-water mixture and the “steam” strips the CO2

• Steam provides the heat

• Chiller before MEA is fed to absorber

• “Trim cooler”

• Chilled water

• “Intercooler”(“clean” and “dirty” streams exchange heat)

• counter current plate/frame heat exchanger

• “Condenser” on top of stripping column

• condense water and MEA, let CO2 pass through to recycle

• Chilled water : Spiral geometry
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HEAT EXCHANGERS
• Two basic “ideas”… a.k.a. equations:

• Energy is conserved

• First law of thermodynamics

• You have already done such calculations!

• Rate of heat transfer will determine the total “transfer area” 
needed for the heat exchanger 

• Newton’s law of cooling

• This may be new to you
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HEAT TRANSFER 
FUNDAMENTALS

• We see that understanding heat transfer is 
essential to knowing exactly how the process 
operates.

• Let’s see if we can efficiently learn some 
fundamentals.
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A PRIMITIVE BUT TECHNOLOGICALLY 
IMPORTANT HEAT EXCHANGER

This device could produce saturated steam at a pressure 
somewhat above 1 atmosphere 

We can see that a lot of the heat from the fire is lost and does 
not heat the water.

We need more contact area between the hot combustion gases 
and the liquid water
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A BETTER HEAT EXCHANGER

An array of tubes gives 
much more surface area

A section of tubes that does not have 
liquid water in it allows the steam to 

become superheated and hence increases 
its ability to do work.
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“BIG BOY” STEAM LOCOMOTIVE
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OTHER TECHNOLOGY EXAMPLES
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A CAR:
• For air exchange note that 

heat exchangers typically 
have “fins”.  This is because 
a low density gas is a good 
insulator, not a good heat 
transfer fluid!

https://
upload.wikimedia.org/

wikipedia/commons/1/1e/
Thermal_conductivity.svg
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MODES OF HEAT TRANSFER
• Radiation 

• Heat transport by electromagnetic waves 

• Conduction

• Transport by molecular/atoms vibrating (for solids).  Free electrons 
for metals. Random molecular motion for gases and liquids.

• Convection

• Transport by net motion of fluid.  (molecular motion that is 
correlated, not random)
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RADIATIVE HEAT TRANSFER
• The third mode of heat transfer is “radiation”.  This is transfer of 

energy through a “transparent” medium by electromagnetic waves.

• The power of temperature in the driving force is “4”, that is

• q~ ε σ (T4 - T0
4), ε, is the “emissivity”and σ is the Stefan-

Boltzmann constant .

• We don’t neglect radiation entirely as you can see that the 
outside of the absorber and stripper are “shiny metal”, for 
which ε=~.06.  The emissivity is close to 1 for dark colored, 
slightly roughened surfaces and exactly 1 for a “black body”.
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STEADY CONDUCTION IN A SOLID
• Fourier’s “Law” of heat 

conduction.
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CONVECTION

Natural convection 
— flow is from 
buoyancy of gas 
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TURBULENCE GREATLY INCREASES HEAT TRANSFER

• Note that direction of heat transfer for this problem is the radial coordinate of the pipe. 

• We hypothesize a constitutive equation for these convective flow situations (since it does 
not seem possible to solve the differential equations for turbulent flow…
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NEWTON’S LAW OF COOLING
• Q = hA( T- T0)

• This empirical equation says that the heat flow from a boundary (say a pipe 
wall), for a flowing fluid is the product of the temperature difference: 
Thermodynamic driving force and

• A variable, h, the “heat transfer coefficient” that is a function of the intensity 
of the fluid mixing and the physical properties (e.g., thermal conductivity) of 
the fluid

• The underlying physical processes that determine “h” are the subject of 
the courses of Transport Phenomena

• We see that Thermodynamics tells us what can occur and Transport 
Phenomena tells us how fast it will occur.  
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WALL REGION OF HEAT EXCHANGER: 
”FORCED CONVECTION”

Steeper 
gradient is 

associated with 
faster heat 

transfer



chemeprof.comUniversity of Notre Dame, USA

ANOTHER BIT OF LINGO:
  BOUNDARY-LAYER

• For process flows, the Reynolds number is usually very much larger than unity and in most 
cases the flow is turbulent.

• Thus, convection is the dominant mode of heat transfer across most of the pipe.

• In this region, the temperature changes very little.

• However, because the fluid velocity is “0” at the wall: (no slip), the convection near the wall 
is greatly decreased and hence conduction becomes relatively more important.

• This region, near the wall (or potentially at the boundary between two fluid phases) is 
termed a “boundary-layer”.

• In this region conductive and convective transport effects are of the same magnitude.

• Also the temperature gradient is very much larger within the boundary-layer than far 
away from the boundary where convection is dominating.  
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HEAT EXCHANGER
Cross-section

Sum of resistances used to get an overall heat 
transfer coefficient, U

Heat transfer resistance occurs at both inside and outside of 
inner pipe, hence there is a heat transfer coefficient for each side.

Cross-section

Sum of resistances used to get an overall heat 
transfer coefficient, U

Heat transfer resistance occurs at both inside and outside of 
inner pipe, hence there is a heat transfer coefficient for each side.

ΔT=T2-T1

T2

T1

inside resistance

outside resistance

resistance 
associated with 

pipe wall 
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The resistance of the pipe wall will usually be much smaller than 
the contributions from the heat transfer coefficients if the pipe is 
made of a metal, but it we want to be precise we should write it as

Note that all of the areas are            for a specifiedNote that all of the areas are            for a specified

The resistance of the pipe wall will usually be much smaller than 
the contributions from the heat transfer coefficients if the pipe is 
made of a metal, but it we want to be precise we should write it as
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HEAT TRANSFER CALCULATIONS
• With this short introduction to some fundamentals of heat transfer we now 

turn to example situations of interest.

• The device we will consider is a “double-pipe” heat exchanger in which one 
liquid is being heated by either a second liquid or condensing steam.

• The two fluids are not mixed.

• Countercurrent usually will provide a larger overall ΔT for a given length

Concurrent

Countercurrent Concurrent

Countercurrent
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HEAT TRANSFER PROBLEM
• The 1 kg/s water stream is flowing in a 3 cm pipe in a countercurrent, double pipe heat exchanger.  The 

water temperature must be raised from 25 C to 50C.  Condensing steam, saturated at 110C will 
provide the heat.

• What flow rate of steam is needed?

• How long should the pipe be?

• The heat transfer coefficient for condensing steam will be much larger than for the water flow so we 
can assume that the wall temperature will be constant at 110C.
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STEADY STATE HEATING OF A LIQUID 
FLOWING IN A PIPE:  HEAT LOAD
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DIFFERENTIAL ANALYSIS TO GET LENGTH OF HEAT 
EXCHANGER

• The steam keeps the pipe wall at a constant temperature, but the 
temperature of the water in the pipe is changing.  We will need a 
differential formulation of the temperature change along the pipe and 
then need to integrate to get the answer.

• Consider a differential slice of pipe.

Newton’s Law of cooling
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• Log mean temperature difference arises 
from this differential analysis when both 
streams are changing temperature
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CORRELATIONS FOR HEAT TRANSFER 
COEFFICIENT

• As with the “friction factor”, we look for the appropriate 
correlation that uses the correct dimensionless groups.

• For heat transfer we need to find a value for the Nusselt number, 
Nu, in terms of the Reynolds number, Re, and the Prandtl number, 
Pr.  
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SOME CORRELATIONS FROM BRODKEY & HERSHEY
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USEFUL INFORMATION
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FOR OUR PROBLEM

• Check these numbers..

• Re = 66000, Pr = 5 ==> Nu = 290

• h = 6060 W/( m2 K)

• L = 2.6 m
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CHECKS
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SUPPOSE THAT HOT WATER IS BEING USED TO 
HEAT THE COLD WATER

• In this case, both streams will 
be changing temperature

• We now will need to set up 
energy balances for the two 
streams and then integrate 
along the length of the heat 
exchanger

Cross-section

Sum of resistances used to get an overall heat 
transfer coefficient, U

Heat transfer resistance occurs at both inside and outside of 
inner pipe, hence there is a heat transfer coefficient for each side.

Cross-section

Sum of resistances used to get an overall heat 
transfer coefficient, U

Heat transfer resistance occurs at both inside and outside of 
inner pipe, hence there is a heat transfer coefficient for each side.
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ANALYSIS OF DOUBLE PIPE HEAT EXCHANGER

Since heat just leaves 
the hot stream and 

enters the cold stream, 
dqc = -dqH



chemeprof.comUniversity of Notre Dame, USA

• Recall that dq, the rate of heat transfer into or out of 
a stream, is modeled with Newton’s law of cooling, 
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• Let’s make a “ΔT”
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ANOTHER WATER HEATING 
PROBLEM

• We wish to heat the 1 kg/s water from 25-50C with the 
inside pipe diameter the same 3 cm, inside a double pipe heat 
exchanger where instead of steam, a 75C water stream of 2 
kg/s is available.

• For simplicity we will neglect the resistance of the pipe wall, 
which is 0.2cm thick.  Also, we know that the outside heat 
transfer coefficient is 3000 W/(m2 K).

• Consider both concurrent and countercurrent configurations.
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• 66
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A larger driving 
force for 

countercurrent 
gives a shorter 

length
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HEAT EXCHANGERS

• Double pipe 

• true counter current

• Shell and Tube 
•a combination 

of counter 
current and 
cross flow
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THERMOSIPHON
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“PLATE” HEAT EXCHANGERS

• Air-Air

• More plates could be 
added
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SPIRAL HEAT EXCHANGER

effectively a high surface area, “double-pipe” heat 
exchanger in a compact space
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SUMMARY OF HEAT 
TRANSFER FUNDAMENTALS

• Three modes of heat transfer can occur:

• Radiation (electromagnetic radiation) 

• Conduction (random motion of molecules, atoms 
and electrons) 

• Convection (heat transfer that is aided by bulk fluid 
motion)
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HEAT EXCHANGER SUMMARY
• Heat exchangers are first analyzed using an energy 

balance

• The rate of transfer across the walls is modeled using 
Newton’s Law of cooling

• We get individual h’s from correlations

• We get a U’s from a sum of resistances

• Because the temperature difference between the two 
sides of the heat exchanger is changing along the pipe, we 
formulate the problem as a differential slice of pipe and 
integrate.  This gives the temperature driving forces as a 
“Log-Mean delta T”


