P&I Diagrams Process Control Vapor Compression cycle 4/16/15

Paris!

EIL CIV 00	19	Travel Tick	-Ceuro	-CEUROSTAR"						
0	U T	rain	Depart	Arrive	Class	Coach	Seat			
04/07 0	07:55 9	9008	LONDON ST-PANCRAS	PARIS NORD	11:17 04/07 Standard	17	83			
Additional information Check in at least 30 min before departure time NON EXCHANGEABLE / NON REFUNDABLE					Booking reference(s) PNR / RMCDZF					
You are booked in a duo seat										
Carrier (0019					USD 2	226.00			
BT PT02	AD 1563 AR NON	63270 FLEXI	059 BTARB / 01ADULT	IV636327005 CA		Issued 2	260614 19:43			

Paris

Partial references for today

Dale E. Seborg Thomas F. Edgar Duncan A. Mellichamp

Piping and instrumentation diagrams

- Intended to show the details of <u>all</u> pipes, valves, sensors/ transducers of the process.
- If it were "your" process, you would want to know everything.
- There may be bypasses, multiple pumps, extra valves, heat exchangers in series, backup thermocouples, ...
 - that are not shown on the process flow diagram but might be important in an emergency or just for maintenance
- The Imperial Instructors take this knowledge of the hardware very seriously so you will get a lot of time to trace every connection in the plant

Figure D-5 Equipment symbols

Symbol	Description	Symbol	Description	Symbol	Description	
n	Lines crossing		Flow quantity or		Plugged valve	
N	battery limit	0	displacement meter		Blind connection	
	New lines or revamp job		Sight flow indicator		Hose connection	
	Existing lines		Pitot tube)-M	connection; S.O. =	
	Underground lines		Flame arrestor)	steam out	
	Battery limit		Rupture disk in line	-+	Y-type strainer	
	Internal lines	<u> </u>	atmosphere		Basket strainer	
D	Instrument lines	<u></u>	Burner		Dupley basket strainer	
0	weld cap			0	Duplex basket stranier	
	Screwed cap		Air trap	→Q	T-type strainer (permanen	
	Reducer	4		→○ −	T-type strainer (temporary	
SP	Spool piece	T-	Bucket trap	± ∞	Vent	
	Removable spool piece	T-	Thermostatic trap	→Q—	Slurry type strainer	
	Bauarrible albert	T-	Impulse trap	A CONTRACTOR	Dual strainers	
	(serv. conn.)	<u>*A</u>	Vacuum tran	* * *	Omit on underground	
	Line blind	*	vacuum uup	*-	water lines	
8	Eigung "0" blind	₽	Float trap		Filter	
RO	Pigure o billio Restriction orifice (flad)		0		Filter with hood	
RO	Restriction orifice (union)	Star (S)	Separator		P. P. Adams Poro-stone	
	Restriction office (union)	Stm ¥	Fiector booster etc	→ŢŢ	air filter type "TR"	
	Line size orifice run	+	Ljeetor, booster, etc	-	Tubular coolers,	
	Increased orifice run		Durion-type mixer	ŶŶ	exchangers etc.	
	Venturi meter	-000	Blow-off valves	the state	Double type or fin type	
П		-5	Varec vent valve	티나	cooler, exchange, etc. Stack for multiple units	
Y.	Atmospheric exhaust head	T	D.F.C.I.		Air-cooled finned pipe	
Ч			Relief valve	RAD	Radiator	
	Silencer	-DEVB	Vacuum breaker		Unit heater	
T 	Gate valve		Atwood & Morrill straight		Fin heater	
	Globe valve		exhaust steam (& VE)	BC	Blast coil	
-101-	Lubrotite valve	E	Electric motor		Coil heater	
-	Check valve	-~	operated valve	1 4	Coolor (how turns)	
*2-	Stop check		Air motor operated valve		Cooler (box type)	
-5-	Plug valve		Hydraulically		Flexible hose	
	Nonlubricated plug valve	IVE	operated valve		Detaile	
	Quick opening valve		Solenoid valve	4	Rotation joint	
_J	Self-draining valve	SLV-A	Side valve (air operated)		Expansion joint	
Ťť_	Chain operated valve	SLV-H	Slide valve	dittillb	Expansion joint	
	Reel valve		(hydraulically operated)		(internal)	
	Ouench valve		Slide valve		Splash guard	
	Needle or V-port valve	Ø	(manually operated)	DF	Drinking fountain	
- N	Angla popratura valva	-101-	Butterfly valve	P a	Water bubbler	
-Y	Angle nometurn varve		3-way control valve		Eye wash fountain	
→ \$	Angle valve	.0		4	Shower head	
-	Angle check valve	→ <u>₹</u>	Angle type control valve	Y	Open drain	
Ŧ		porting	Control valve assembly	fwK	Material furnished by	
	4-way valve		Gate va. or globe va.	By N By ot	others to be noted on	
	3-way valve		Tempering valve	+ MAN	drawing thus	
4		V.	(TGCO Type "A")			
Q	Rotameter	CSO/CSC	CSO = car seal open			
			CSC = car seal closed			

Figure D-6

Flowsheet symbols, particularly for detailed equipment flowsheets. (*Courtesy of the*

CHAPTER 3 Process Design Development

Figure 3-3

Piping and instrumentation diagram for a commercial integrated solar water heating system

Imperial Flowsheet

Pipes!

Cables, transducers, thermocouples

Infra-red Spectroscopy

Figure 6.2 *Low-resolution* infrared absorption spectra of the major atmospheric gases. (compare to Figure 6.3 that shows transmission with higher spectral resolution)

Control: driving a car

- If we just stick the basic situation...
 - You are driving a car on a "test track" with no other cars.
 - The goal is to drive a preferred "line" at constant speed.
 - How could this be accomplished?

Driving car

- <u>Feedback</u>control
 - You could be watching or listening to see/hear if you are "on" the track (or preferred "line")
 - Yes: do nothing, No: correct back (on/off)
 - Pretty crude and might not get you back on in time
 - You could have in mind a range of paths that are more or less desirable. As you get away from a more desirable position, you correct or correct harder
 - The second might work, but you could be *surprised* if the path changes

Driving Car

- <u>Feedforward</u> Control
 - You look at the road ahead and turn the wheel according to a specified set of rules or equations that are <u>presumed</u> to be adequate to keep the car on track. In the simplest idealization you are not looking at where you are on the road, only what is coming up.
 - The ability to <u>anticipate</u> is certainly a benefit and if all goes will could get the car almost exactly on track
 - If something goes wrong, e.g., the road has bumps or some slope, then the specified turning won't work perfectly.

Driving a car

- We could also mention: Sensitivity/stability
 - Let's not..
 - or just say you will have to drive different vehicles differently!
- So what you really use is a combination of feedback and feedforward control
 - With feedback you use a complex algorithm that includes thinking of how fast the car is returning to the path.

Process control

- These same principles apply to chemical processes.
 - <u>Feedback</u> to make sure you are on track
 - <u>Feedforward</u> to anticipate "upsets" say from fluctuations in the feed concentration or temperature
- For either driving or a chemical process, you need specifications (e.g., concentration) from which you create "setpoints".

Simple process example

Feedback: Measure output, adjust input

Feedforward

Method 2. Measure x_1 , adjust w_2 . As an alternative to Method 1, we could measure disturbance variable x_1 and adjust w_2 accordingly. Thus, if $x_1 > \overline{x}_1$, we would decrease w_2 so that $w_2 < \overline{w}_2$. If $x_1 < \overline{x}_1$, we would increase w_2 . A control law based on Method 2 can be derived from Eq. 1-3 by replacing \overline{x}_1 with $x_1(t)$ and \overline{w}_2 with $w_2(t)$:

Our Process

Coal/w sequestration (+NG)

Notes: (a) GHGs (CO₂, CH₄, and N₂O) expressed in million tonnes CO₂-equivalents/yr at 100% capacity; (b) Change in GWP and change in fossil energy consumption compared to reference

Expected "specs"

- CO2 concentration in Absorber exit is below ~1% or 5%
- Either because the other gas needs a specified purity or because you are required to remove a certain fraction of the CO2
 - adjust temperature of input MEA stream (easy)
 - adjust flowrate of input MEA stream (easy, but propagates back through the process and changes concentration only in certain ranges)
 - remove more CO2 from MEA in stripper

For dilute systems:

$$z = H_{OG}N_{OG} = H_{OG} \int_{y_2}^{y_1} \frac{dy}{y - y^*}$$
$$H_{OG} = \frac{V}{K'_y aS} = \frac{V}{K_y a(1 - y)_{*M}S}$$

- V is the gas flow rate in moles/time
- \mathcal{K}_{v} is the appropriate mass transfer coefficient
- a is the area of gas-liquid contact per volume of packed bed
- S is the cross sectional area of the column
- *y* is the mole fraction of the component in the gas
- y^* is the equilibrium value of the transferring gas component in the liquid.

Expected spec

- Nitrogen in exit CO2 stream
 - Change temperature in absorber
- Water vapor in exit MEA stream
 - More/colder water in condenser

Propagated effect

 If you change the MEA flowrate or want to change the concentration of CO2 in the MEA feed, the reboiler steam rate will have to be adjusted

Vapor Compression Refrigeration

- Very common process for creating cold or liquifying a gas
 - Can be used to "pump heat"
- The Carnot efficiency can be greater than 1 since you are just pumping heat, not turning heat into work
- Usually you have a temperature requirement on the cold side (evaporator) because this what you want to cool.
- You also have a temperature range for being able to successfully expel the heat (outside your car or refrigerator)
 - The pressures are adjusted to match these temps.
 - Flowrate of refrigerant provides require cooling capacity

Experimental device

Figure 4.1: Photograph of the *PA-Hilton R633* Refrigeration Cycle Demonstration Unit.

Normal operation

___ Refrigerant pump down

