CBE 30399 2/4/16

TOPICS

- Something about... London!
- Review of heat transfer and heat exchangers
- Continuation of discussion of gas absorption

BLETCHLEY PARK (CODE BREAKING)

TRAINS (TO BLETCHLEY)

IMPERIAL FLOWSHEET

HEAT EXCHANGERS

- Two basic ''ideas''... a.k.a. equations:
 - Energy is conserved
 - First law of thermodynamics
 - We have accurate equations to quantify how fast heat will flow through fluids and walls
 - Newton's law of cooling

HEAT EXCHANGER EQUATIONS

FIRST LAW FOR "BLACK BOX" HEAT EXCHANGER

COLD FLUID COLD OUF TCZ FLUID IN m, HUT an 1HI THO m $0 = \dot{m}_{c}(H_{c_{1}} - H_{c_{2}}) + \dot{m}_{t}(H_{t_{1}} - H_{t_{1}})$ AHECPAT $m_c C_p (T_c - T_c) + m_H C_p (T_H - T_H)$

ENERGY BALANCE FOR EACH "PIPE" SEPARATELY

"COLD" "PIPE"	
$T_{cl} \rightarrow T_{c_{z}}$	àc >0, Q+ -0
m_c m_c M_c	$\hat{Q}_{r} = -\hat{Q}_{H}$
$0 = in_{c}C_{p}(T_{c_{1}} - T_{c_{2}}) + \hat{Q}_{c}$	

OVERALL RATE EQUATION Q = UA ATIM U = OUERALL HEAT TRANSPER (DEFFICIENT A MEASURE OF OUERALL EFFICIENCY OF AGAF TRANSFER A = CONTACT AREA BETWEEN COLD AND HOT STREAMS J.E. INSIDE ON OUTSIDE AREA OF "PIPE"

"LOG MEAN" JEMPERATURE STIM = DIFFERENCE THE OUERALL AUERAGE "DELTA T" BETWEEN HOT AND COLD STREAMS OBTAINED BY INTEGRATING A DIFFERBNTIAL HEAT BALANCE ALONG THE LENGTH DE PIPE

STIM = ATZ - ATI In (AIZ) $= (T_{c_2} - T_{H_2}) - (t_{c_1} - T_{H_1})$ In (Ta-T#2)

"DELTAT LOG-MEAN" W/NUMBERS

30-100 5-40 30-100 ln 15-40 = - 43,76 WHATIF COCURRENT? (15-100) - (30-40) (15-100 In 30-40 = -3500

GAS ABSORPTION/STRIPING

Imperial Flowsheet

THETWO COLUMNS

PACKED TOWER

Countercurrent

- greater overall "driving force" (concentration difference)
- (potentially) no limitation on amount of CO2 removed
 - could contact lowest concentration exiting gas with "pure" solvent

TWO BASIC PRINCIPLES

- Conservation of mass
 - Keep track of chemical species and deal with reaction
- Rate of transfer equation
 - analogous to Newton's Law of cooling

B MASS BALANCE (MOLES) $G_1 + L_2 = G_2 + L_1$ (DULD BEN COAST) L, =L (DZIN = (DZOUT $y_i G + L \chi_z = y_z G + L \chi_i$ (y1-y2) 6= (Y1-X2) L p (Y, X) BOTTOM 46 0 (X2, y1) TOP. X (Y, - Xz) L=

. Agt BUTTOM y DRIVING 46: y= 1+x FORCE Tel X ALL ALONG COLUMN, CONCENTRATION IN GAS OF CO2 15 > FQUILIBRIUM VALUES, SD COZ GOES IDUTO LOQID Y (BULK) 4 > 48 St V AREA JIME TRANSFER X DRIVING COEPPICIENT FORCE Non = kon (y-y* 1

3) MEAJUATES O2tN2 W =0 Non = kar(y-y) = lay HOW OD WE PRAL WITHTHS? JAKE "CONCEPTUALLY" A " DIFFENDIAL SLICE " ACROSS COULUMN- (X-SECTION) DD A MASS BALANGE MOLES CHANGE OF MOLES IN GAS = MOLES CROSSING UN A = kg J)A A UIZHOZI WIER DZ FAG 614/2

CHANGE IN MOLES/JIM 6 $G_y|_z - G_y|_{z+\Delta z} = k q(y-y^*) \Delta V$ CROSS-SECTION AREA AUE ATOWER AZ CONTACT ARBA FOR MASS TRANSFRE QE VOLUME OF PACKED REGION (Y)ZTAZ-YZ) = Ra(Y-gx) ATONER -6 DZ ka (y-y*) A dy de= 6 え 12 dy 6/A dZ (y - y*) ha C ryz-dy G/A lia yx) <y Nog 7 Noa

IP HOT = CONST yz dy -1F 4 # = 0. $\int_{y_1}^{y_1} \frac{dy}{dt} = \ln \left(\frac{y_1}{dt} - \frac{y_2}{dt} - \frac{y_1}{dt} \right)$ For DAR 2 IMPRIAL EXPTS, YOU CAN MEASJERE Y AT BEGINNING MIDDLEJ END SOME MORE IN BETWEEN. YOU KNOW Z, CONCENTRATIONS UIVE NOG DEFERMINE Hoch

S) Por SIG COLUMN. DON'S INTEASOR FORMULAE ... 60 50 $-\frac{dy}{dz} = \frac{kq}{(q-y^{\epsilon})A}$ $\left(\frac{G}{A}\right)\left(\frac{1}{2}-y^{*}\right)\left(\frac{dy}{dz}\right)$ le = QV QU = PROPRITY OF "PACKING" 350 m2/m3 = TAZ TWO "SCACES" dy dz DISTANCE BEFWEEN MBASURE MENTS YX=0, Ly G- GAS FLOWRAFE A CLOS AREA OF FOWER.

(14) 12-20 K(y-y=) a, A= b dy Ac $K = dy \int G$ $Jz (y - y^{z}) f$ du $Lik JP ay = 350 m^2 m^3$ $P = 101, 3 \times 10^{3}$ $G = 100 \frac{k_{g}}{h_{x}} \frac{mal}{m^{2}}$ y= ,05 $\frac{dV}{dE} = \frac{02}{1m}.$ $\frac{102}{(m)}\left(\frac{1}{00-05}\right)\left(\frac{100 \text{ kg mo}}{\text{m}^2 \text{ hr}}\right)$ $350 \text{ m}^2/\text{m} 3 10 \text{ the}$ Ξ

 $\frac{dy}{y-y^2} = \frac{kq_y}{6}$ dzz G (dz Of Karl) y-yz $\left(\begin{array}{c} G\\ Kq_{v}P\end{array}\right)\left(\begin{array}{c} g_{s}^{-1}\right)\left(g+\left(y_{s}^{-1}\right)\Omega_{u}\left(y-y_{s}^{-1}\right)\right)$ H06 = 2.5 m 4186 $A = .0415 m^2$

