CBE 20260 Spring 2011 Test #1 2/17/2011

1. Use of steam tables to analyze a steam table (30 points)

It is amazing what ideas have been turned into TV shows. On the Food Channel, there is a show called: "Dinner Impossible" where chef Robert Irvine has to create "theme" dinners under various restricting circumstances (e.g., using food only obtained from containers in a shipyard and being cooked on devices that he put together from available materials ... barrels and metal grates!)

3 Well Unit Pictured

For this problem you will need to analyze the steady state operation of a "steam table" which is designed for use in a kitchen. The analysis will be done inside for its intended use and outside, say if Chef Robert needed to keep food hot for a dinner for the NHL Winter Classic -- perhaps in Montreal in January.

Steam tables can be purchased with either electrical or gas heating (i.e. essentially like clothes dryers).

When running at steady state and just holding food at constant T, a steam table gives off heat to the surroundings and a steady stream of steam that is generated inside the device and which flows past the pans of food (where it also keeps the food moist). It is vented out the top. For this problem steam is boiling away at 10 kg/hour (=3600 s).

Note that at steady state the water inside has <u>already</u> been heated to 100C and for the purposes of this problem, this amount stays constant (even though there is a steady venting stream).

- a. Obtain the form of the energy balance that can be used to analyze this problem starting with eq. 2.64 in the appendix. Justify any terms that are crossed out with an explanation. Consider the case where electricity is used to power the device and hence is a shaft work (input).
- b. The sensible heat loss can be modeled with Newton's law of cooling,

 $\dot{Q} = hA(T_{metal} - T_{room})$ where *h* is a heat transfer coefficient, *A* is the surface area of the

steam table (= 4 m^2), the temperature of the metal is 80C and the room is 25C. The heat transfer coefficient will have a nominal value of 10 W/m²K. How much electrical power (Watts), will be needed to run the table?

c. Now suppose that this unit is placed outside in January in Montreal. Now the "room" is at -20C. Further, heat transfer coefficient is now 25 W/m²K because of some wind. The temperature of the metal is lower at 70C. How many Watts are needed now?

For outside use, he probably needs a unit that is powered by portable chemical fuel (saves on a long extension cord!). Propane is a good choice.

d. Analyze the steam table with a gas input as the heat source. Write down an energy balance that describes this situation and again justify canceling the appropriate terms.

The heat of the combustion reaction for propane is 44 kJ/mole (= 1000 kJ/kg). You can assume that CO₂ and water leave the combustion chamber of the steam table at the appropriate <u>reference</u> conditions_for the heat of combustion calculation.

e. What is the propane mass flow rate necessary to run the steam table?

2. Just a piston and cylinder filled with ideal gas (40 points)

For this problem, consider a piston and cylinder arrangement where 1 mole of "ideal gas" is confined by a piston. This ideal gas has a Cp = 5/2R and Cv = 3/2R. We will use this device in a three-step cycle and examine the various steps and the values of heat and work.

The initial state will be T_1 , P_1 . The first step will be to T_2 , P_2 , the second step will be from T_2 , P_2 to T_3 , P_3 . The third step will be back to T_1 , P_1 .

- a. What does the internal energy change for the complete cycle have to be? Why is this the case?
- b. Using the energy balance given as equation 2.64 in the appendix, derive the form of the energy balance that you will need to solve this problem. For each term that is 0, state why. (You don't have to comment on the kinetic or potential energy terms.)
- c. Step one is isothermal compression from $T_1 = 273K$ and $P_1 = 1$ ATM to $T_{1=}T_2 = 273K$ and $P_2 = 5$ ATM. Derive the necessary algebraic expression then calculate the heat, work and change in internal energy for this step.
- d. The next step is constant pressure heating to $T_3 = 798$ K and $P_2 = P_3 = 5$ ATM. Derive the necessary algebraic expression then calculate the heat, work change in internal energy for this step.
- e. The third step is an <u>adiabatic</u> expansion back to $P_1 = 1$ ATM and $T_1 = 273$ K. Derive the necessary algebraic expression then calculate the work and internal energy change for this step.
- f. What value of change of internal energy for the entire cycle did you calculate?
- g. What was the total work for the cycle?
- h. What was the total heat for the cycle?
- i. Calculate an efficiency for this "heat engine" as: (work out in step 3)/(work in for step 1 + heat in for step 2).
- j. If we continue to require a cycle with the same three steps, will the efficiency change if T₁ is changed? Show the answer.
- k. If we continue to require a cycle with the same three steps, will the efficiency change if P_2 is changed? Show the answer.

3. Analysis of a steam catapult (30 points)

ALDPLAND	
 PISEN PISEN	
VALUE VALUE	
HIGH PABSSULE STEAM TANK	

While the newest generation of aircraft carriers will have electromagnetic catapults, steam has been the chosen propulsion method for launching airplanes from the flight deck for the past 60 years. This device can accelerate a 45,000 lb (20,000 kg) airplane from 0 to 165 mph (75 m/s) in about 2 seconds. (This acceleration is almost 4 g's! To compare this, the "Top Thrill Dragster" at *Cedar Point* does 0 to 120 MPH in about 4 seconds or only about 1.2 g!)

Use MKS units for this problem.

You can calculate the kinetic energy of the aircraft at take-off as 56,000kJ. The jet engines contribute 35% of this and the catapult contributes 65%.

For each catapult, there are two piston-cylinder assemblies (symmetric across the axis of travel) that are driven by steam from a feed tank. You will be considering just one piston assembly.

Each piston is 0.535 m in diameter and travels 100 m. The force exerted by the piston, which is roughly constant during the launch, is 180,000 Newtons (kg- m^2/s^2).

a. Write the version of the energy balance that will allow you to analyze cylinder behind in which steam will be entering and pushing the piston forward. Note that no heat exchange occurs during this short launch time. After a short initial transient, the pressure and temperature behind the piston remain constant during steam injection. (You might think about why keeping T constant is a really good idea!)

b. What pressure is necessary to produce the force (i.e., 180,000 N) needed during the launch?

Note that the source of steam is separated from the cylinder by an adiabatic valve.

- c. Write down the version of the energy balance that tells the behavior of the steam as it enters and leaves the valve.
- d. If the work done on the piston is (-) 18,000 kJ, how many kg of HP steam are needed? Note that once the steam is inside the cylinder, it will be saturated!

HP steam is 5 MPa and 264C. Note that the working pressure during launch is constant at your value from "b" and the temperature is constant at value for saturation at the working pressure.

Appendix 1.

Figure 2.9 Schematic of a general system.

$$\frac{d}{dt}\left(\underline{U} + \frac{1}{2}\frac{mu^2}{g_c} + \frac{mgz}{g_c}\right) = \sum_{inlets} \left(H + \frac{1}{2}\frac{u^2}{g_c} + \frac{gz}{g_c}\right)^{in} \dot{m}^{in}$$

$$- \sum_{outlets} \left(H + \frac{1}{2}\frac{u^2}{g_c} + \frac{gz}{g_c}\right)^{out} \dot{m}^{out} + \dot{\underline{U}} + \frac{\dot{\underline{W}}_s}{g_s} + \frac{\dot{\underline{W}}_{EC}}{g_{EC}}$$
2.64

Where superscripts "in" and "out" denote properties of the streams which cross the boundaries, which may or may not be equal to properties of the system.

$$\dot{W}_{EC} = -P \frac{dV}{dt} \quad dW_{EC} = -PdV \quad dQ = \dot{Q} dt$$

$$U = \frac{U}{m}, V = \frac{V}{m}, H = \frac{H}{m}, \text{etc, or}$$

$$U = \frac{U}{n}, V = \frac{V}{n}, H = \frac{H}{n}$$

$$C_{v} = \frac{\partial U}{\partial T}|_{V} \quad C_{P} = \frac{\partial H}{\partial T}|_{P}$$

 $H \equiv U + PV$

E.6 PROPERTIES OF WATER¹

I. Saturation Temperature

S	kJ/kg-K	9.1555	9.0248	0.0790	8.6660	8.5566	8.4520	8.3517	8.2555	8,1633	8.0748	7.9898	7.9081	7.8296	7.7540	7.6812	7.6111	7.5434	7.4781	7.4151	7.3541	7.2952	7.2381	7.1828	1.1291	7.0770	1.0204	7//6/0	5676.0	0.8820	6.8371	6.7926	6.7491	6.7066	6.6650	6.6241	6.5840	6.5447	
de∧S∕∆	kJ/kg-K	9.1555	8.9485	0.1401	8.2228 8.3605	8.1894	8.0152	7.8466	7.6831	7.5247	7.3710	7.2218	7.0768	6.9359	6.7989	6.6654	6.5355	6.4088	6.2852	6.1647	6.0469	5.9319	5.8193	5.7091	5.6012	5.4954	5.3918	0067.5	1061.0	9190.c	4.9953	4.9002	4,8065	4.7143	4.6233	4.5335	4,4448	4.3572	
St	kJ/kg-K	0.0000	0.0763	1101.0	0.265	03672	0.4368	0.5051	0.5724	0.6386	0.7038	0.7680	0.8313	0.8937	0.9551	1.0158	1.0756	1.1346	1.1929	1.2504	1.3072	1.3633	1.4188	1.4737	1.5279	1.5816	1.6346	- 7/ 90.1	1./392	1.7907	1.8418	1.8924	1.9426	1.9923	2.0417	2.0906	2.1392	2.1875	
H^{L}	kJ/kg	2500.92	2510.06	17.6107	CC.02C2	2546 51	2555.55	2564.55	2573.51	2582.43	2591.29	2600.09	2608.83	2617.50	2626.10	2634.60	2643.02	2651.33	2659.53	2667.61	2675.57	2683.39	2691.06	2698.58	2705.93	2713.10	2720.08	2720.87	2733.44	2739.80	2745.93	2751.81	2757.44	2762.81	2767.90	2772.71	2777.21	2781.41	
ΔH^{rap}	kJ/kg	2500.92	2489.04	24/1.19	2403.52	2441 68	2429.82	2417.92	2405.98	2394.00	2381.95	2369.83	2357.65	2345.38	2333.03	2320.57	2308.01	2295.32	2282.49	2269.52	2256.40	2243.12	2229.64	2215.99	2202.12	2188.03	2173.70	Z159.13	2144.28	2129.16	2113.75	2098.02	2081.97	2065.57	2048.82	2031.69	2014.16	1996.22	
H_{Γ}	kJ/kg	0.00	21.02	42.02	82.20 83.01	104.83	125.73	146.63	167.53	188.43	209.34	230.26	251.18	272.12	293.07	314.03	335.01	356.01	377.04	398.09	419.17	440.27	461.42	482.59	503.81	525.07	546.38	567.74	589.16	610.64	632.18	653.79	675.47	697.24	719.08	741.02	763.05	785.19	
U^{V}	kJ/kg	2374.92	2381.78	2388.00	2393.49	240913	2415.91	2422.67	2429.39	2436.08	2442.73	2449.34	2455.90	2462.41	2468.86	2475.24	2481.56	2487.81	2493.97	2500.04	2506.02	2511.90	2517.67	2523.33	2528.86	2534.27	2539,53	2544.65	2549.62	2554.42	2559.05	2563.51	2567.78	2571.85	2575.73	2579.39	2582.83	2586.04	
ΔU^{nap}	kJ/kg	2374.92	2360.76	2340.05	10.2662	12:0102	2290.18	2276.04	2261.86	2247.65	2233.40	2219.10	2204.74	2190.32	2175.83	2161.25	2146.60	2131.86	2117.00	2102.04	2086.96	2071.75	2056.41	2040.92	2025.26	2009.44	1993.44	1977.24	1960.85	1944.23	1927.39	1910.32	1892.99	1875.39	1857.53	1839.37	1820.91	1802.13	
Cr C	kJ/kg	0.00	21.02	42.02	02.98 83 01	104.83	125.73	146.63	167.53	188.43	209.33	230.24	251.16	272.09	293.03	313.99	334.96	355.95	376.97	398.00	419.06	440.15	461.26	482.41	503.60	524.83	546.09	567.41	588.77	610.19	631.66	653.19	674.79	696.46	718.20	740.02	761.92	783.91	
M	m ³ /kg	205.9912	147.0113	106.3032	CC18.11	1001.10	32.8783	25.2053	19.5151	15.2521	12.0269	9.5643	7.6672	6.1935	5.0395	4.1289	3.4052	2.8258	2.3591	1.9806	1.6718	1.4184	1.2093	1.0358	0.8912	0.7700	0.6680	0.5817	0.5085	0.4460	0.3925	0.3465	0.3068	0.2724	0.2426	0.2166	0.1938	0.1739	
ΝŢ	m ³ /kg	0.001000	0.001000	0.001000	0.001001	0.001003	0.001004	0.001006	0.001008	0.001010	0.001012	0.001015	0.001017	0.001020	0.001023	0.001026	0.001029	0.001032	0.001036	0.001040	0.001043	0.001047	0.001052	0.001056	0.001060	0.001065	0.001070	0.001075	0.001080	0.001085	0.001091	0.001096	0.001102	0.001108	0.001114	0.001121	0.001127	0.001134	
Ρ	(MPa)	0.000612	0.000873	877100.0	0.001/00	0.003170	0.004247	0.005629	0.007385	0.009595	0.012400	0.015800	0.019900	0.025000	0.031200	0.038600	0.047400	0.057900	0.070200	0.084600	0.101400	0.120900	0.143400	0.169200	0.198700	0.232200	0.270300	0.313200	0.361500	0.415700	0.476200	0.543500	0.618200	0.700900	0.792200	0.892600	1.002800	1.123500	
Т	())	0.01	Ś	10	0	250	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180	185	

1. Harvey, A. P. Peskin, A. P., Klein, S. A., NIST/ASME Steam Properties, Version 2.1, NIST Standard Reference Data Program, December 1997.

S	kJ/kg-K	6.5059	6.4678	0.4502	6.3930	6.3563	6.3200	6.2840	6.2483	6.2128	6.1775	6.1423	6.1072	6.0721	6.0369	6.0016	5.9661	5.9304	5.8944	5.8579	5.8209	5.7834	5.7451	5.7059	5.6657	5.6244	5.5816	5.5372	5.4908	5.4422	5.3906	5.3356	5.2762	5.2110	5.1380	5.0536	4.9497	4.8012	4.4070
∇S^{nab}	kJ/kg-K	4.2704	4.1846	4.099/	4.0153	3.9318	3.8488	3.7663	3.6843	3.6027	3.5214	3.4403	3.3594	3.2786	3.1977	3.1167	3.0354	2.9539	2.8720	2.7894	2.7062	2.6222	2.5371	2.4507	2.3629	2.2734	2.1818	2.0878	1.9908	1.8904	1.7856	1.6755	1.5586	1.4326	1.2941	1.1369	0.9483	0.6900	0.0000
Sr Sr	kJ/kg-K	2.2355	2.2832	CU51.2	2.3777	2.4245	2.4712	2.5177	2.5640	2.6101	2.6561	2.7020	2.7478	2.7935	2.8392	2.8849	2.9307	2.9765	3.0224	3.0685	3.1147	3.1612	3.2080	3.2552	3.3028	3.3510	3.3998	3.4494	3.5000	3.5518	3.6050	3.6601	3.7176	3.7784	3.8439	3.9167	4.0014	4,1112	4.4070
H^{V}	kJ/kg	2785.28	2788.82	10.76/7	2794.83	2797.27	2799.32	2800.95	2802.15	2802.90	2803.17	2802.96	2802.22	2800.93	2799.07	2796.60	2793.49	2789.69	2785.17	2779.87	2773.73	2766.70	2758.70	2749.64	2739.43	2727.95	2715.05	2700.59	2684.33	2666.03	2645.35	2621.85	2594.90	2563.64	2526.65	2481.49	2422.95	2334.52	2084.26
∇H^{nab}	kJ/kg	1977.85	1959.03	1939.74	1919.95	1899.64	1878.79	1857.37	1835.35	1812.71	1789.40	1765.41	1740.67	1715.16	1688.84	1661.64	1633.53	1604.42	1574.27	1542.99	1510.48	1476.67	1441.43	1404.63	1366.13	1325.73	1283.22	1238.37	1190.81	1140.16	1085.90	1027.32	963.42	892.75	812.93	719.83	605.18	443.83	0.00
H_{Γ}	kJ/kg	807.43	829.79	17.708	874.88	897.63	920.53	943.58	966.80	990.19	1013.77	1037.55	1061.55	1085.77	1110.23	1134.96	1159.96	1185.27	1210.90	1236.88	1263.25	1290.03	1317.27	1345.01	1373.30	1402.22	1431.83	1462.22	1493.52	1525.87	1559.45	1594.53	1631.48	1670.89	1713.72	1761.66	1817.77	1890.69	2084.26
U^{L}	kJ/kg	2589.01	2591.74	07.94.20	2596.40	2598.31	2599.94	2601.25	2602.24	2602.90	2603.20	2603.13	2602.67	2601.79	2600.49	2598.72	2596.45	2593.67	2590.33	2586.39	2581.81	2576.53	2570.49	2563.62	2555.85	2547.07	2537.17	2526.01	2513.41	2499.15	2482.96	2464.44	2443.09	2418.14	2388.40	2351.78	2303.79	2230.26	2015.73
ΔU^{vap}	kJ/kg	1783.01	1763.56	1/43./5	1723.53	1702.92	1681.90	1660.43	1638.50	1616.09	1593.16	1569.69	1545.65	1521.00	1495.72	1469.75	1443.04	1415.57	1387.26	1358.06	1327.89	1296.67	1264.30	1230.67	1195.67	1159.14	1120.89	1080.70	1038.30	993.35	945.40	893.82	837.79	776.01	706.44	625.50	526.00	386.19	0.00
CF.	kJ/kg	806.00	828.18	14.002	872.87	895.39	918.04	940.82	963.74	986.81	1010.04	1033.44	1057.02	1080.79	1104.77	1128.97	1153.41	1178.10	1203.07	1228.33	1253.92	1279.86	1306.19	1332.95	1360.18	1387.93	1416.28	1445.31	1475.11	1505.80	1537.56	1570.62	1605.30	1642.13	1681.96	1726.28	1777.79	1844.07	2015.73
$h^{\!A}$	m ³ /kg	0.1564	0.1409	0.12/2	0.1151	0.1043	0.0947	0.0861	0.0784	0.0715	0.0653	0.0597	0.0547	0.0501	0.0459	0.0422	0.0387	0.0356	0.0328	0.0302	0.0278	0.0256	0.0235	0.0217	0.0199	0.0183	0.0169	0.0155	0.0142	0.0130	0.0118	0.0108	0.0098	0.0088	0.0079	0.0069	0.0060	0.0050	0.0031
M	m ³ /kg	0.001141	001149	/ 1100.0	001164	0.001173	0.001181	061100.0	0.001199	0.001209	0.001219	0.001229	0.001240	0.001252	0.001264	0.001276	0.001289	001303	001318	001333	0.001349	0.001366	0.001385	0.001404	0.001425	0.001448	0.001472	.001499	0.001528	0.001561	.001597	0.001638	0.001685	0.001740	0.001808	0.001895	002017	0.002215	0.003106
d,	(MPa)	.25520	08860	064001	(.72430	0//06	2.10580	2.31960	2.54970 (79710 (3.06250 (3.34690 (3.65120 (3.97620 (1.32290 (1.69230 (5.08530 (5.50300 (5.94640 (i.41660 (.91470 (7.44180 () 01666.1	3.58790 ().20940 ().86510 (0.55620 (1.28430 (2.05100 (2.85810 (3.70730 (4.60070 (5.54060 (6.52940 (7.57010 (8.66600 (9.82140 (:1.04360 (2.06400 (
Т	() ()	1 061	195	1 007	205	1 017	215	220 2	225 22	230 23	235 3	240 3	245 3	250 3	255 4	260 4	265 5	270 5	275 5	280 6	285 6	290 7	295 7	300 8	305 9	310 9	315 1	320 1	325 1	330 1	335 1	340 1	345 1	350 1	355 1	360 1	365 1	370 2	373.95 2

Saturation Temperature (cont.)

	M																																							
2r S	kJ/kg-	8.9749 8.7226	8.5764	8.4734	8.3938	3770 8	8.2273	8.1858	8.1488	7.9072	7.7675	7.6690	0566.7	11507	1,4790	V2247	7.3943	7.3589	/.1269	6.9916	6.8955	6.8207	6.725	6.7071	6.6616	6.6213	0.2820	/170.0	0.40/0	6.4199	C//F.0	6.3390	0.2558	6.1856	6.1243	0,0090	6.0197	1000 3	1068.0	0410.0
40v2p	kJ/kg-K	8.8690 8.4620	8.2221	8.0510	7.9176	7000.1	7.6348	7.5635	7.4996	7.0752	6.8234	6.6429	8105.9	0.3850	0.2809	6.2009	6.1247	6.0561	5.5967	5.3199	5.1190	4.9603	4.8285	4.7153	4.6159	4.5272	4.4469	4.3058	4.1840	4.0764	3.9800	3.8922	3.7015	3.5400	3.3989	3.2728	3.1582	3.0227	570977	4760.7
Ś	kJ/kg-K	0.1059 0.2606	0.3543	0.4224	0.4762	0.5500	0.5925	0.6223	0.6492	0.8320	0.9441	1.0261	1.0912	1.1455	1.1921	1.2330	1.2696	1.3028	1.5302	1.6717	1.7765	1.8604	1.9308	1.9918	2.0457	2.0941	2.1381	2.2159	2.2835	2.3435	2.3975	2.4468	2.5543	2.6456	2.7254	2.7968	2.8615	2.9210	3.02/8	3.1224
H^{V}	kJ/kg	2513.67 2532.88	2544.84	2553.67	2560.73	CD-00C7	2276.21	2580.22	2583.86	2608.94	2624.55	2636.05	2645.22	2652.86	2659.42	2665.18	2670.31	2674.95	2706.23	2724.88	2738.05	2748.11	2756.14	2762.75	2768.30	2773.03	2777.11	2783.74	2788.85	2792.82	2795.91	2798.29	2801.93	2803.15	2802.64	2800.82	2797.95	2794.21	2784.59	2112.05
∇H^{vap}	kJ/kg	2484.37 2459 45	2443.86	2432.28	2422.98	2400 27	15.0042	2396.97	2392.05	2357.52	2335.28	2318.43	2304.68	2292.95	2282.67	2273.47	2265.11	2257.45	2201.53	2163.45	2133.39	2108.02	2085.76	2065.75	2047.44	2030.47	2014.59	1985.41	1958.88	1934.36	1911.44	1889.79	1840.02	1794.81	1752.84	1713.33	1675.70	1639.57	1570.67	1504.97
H^{L}	kJ/kg	29.30 73.43	100.98	121.39	137.75	36 671	22.001	183.25	191.81	251.42	289.27	317.62	340.54	359.91	376.75	391.71	405.20	417.50	504.70	561.43	604.66	640.09	670.38	697.00	720.86	742.56	762.52	798.33	829.97	858.46	884.47	908.50	961.91	1008.34	1049.80	1087.49	1122.25	1154.64	1213.92	1267.66
Ω^{F}	kJ/kg	2384.49 7308 on	2407.88	2414.50	2419.80	2424.23	2420.02 14147	2434.43	2437.16	2455.98	2467.70	2476.33	2483.21	2488.95	2493.88	2498.21	2502.07	2505.55	2529.09	2543.15	2553.10	2560.71	2566.79	2571.81	2576.03	2579.64	2582.75	2587.83	2591.76	2594.83	2597.24	2599.12	2602.06	2603.16	2602.94	2601.72	2599.68	2596.98	2589.90	2580.98
død IV	kJ/kg	2355.19	2306.90	2293.12	2282.06	0/7/77	2204./1	2251.19	2245.36	2204.58	2178.46	2158.75	2142.72	2129.10	2117.20	2106.58	2096.97	2088.15	2024.60	1982.04	1948.88	1921.17	1897.07	1875.58	1856.06	1838.09	1821.36	1790.87	1763.40	1738.23	1714.87	1692.97	1643.15	1598.47	1557.47	1519.24	1483.15	1448.77	1383.89	1322.78
T^{1}	kJ/kg	29.30	100.98	121.38	137.74	151.47	173 83	183.24	191.80	251.40	289.24	317.58	340.49	359.85	376.68	391.63	405.10	417.40	504.49	561.11	604.22	639.54	669.72	696.23	719.97	741.55	761.39	796.96	828.36	856.60	882.37	906.15	958.91	1004.69	1045.47	1082.48	1116.53	1148.21	1206.01	1258.20
V^{Λ}	m ³ /kg	29.1780	15.6532	14.7911	28,1853	23./334 20 52 45	00000 S	6 1992	14.6701	7.6480	5.2284	3.9930	3,2400	2.7317	2.3648	2.0871	1.8694	1.6939	0.8857	0.6058	0.4624	0.3748	0.3156	0.2728	0.2403	0.2149	0.1944	0.1633	0.1408	0.1237	0.1104	0.0996	0.0799	0.0667	0.0571	0.0498	0.0441	0.0394	0.0324	0.0274
N	m ³ /kg	001000	1001003	.001004	.001005	001000	001008	001000	010100	.001017	.001022	001026	001030	0.001033	0.001036	0.001039	0.001041	001043	001061	.001073	.001084	0.001093	01101	001108	0.001115	001121	0.001127	001139	0.001149	0.001159	0.001168	0.001177	0.001197	0.001217	0.001235	0.001253	0.001270	0.001286	0.001319	0.001352
٩.	(MPa)	1001	003	.004	.005	006	100.	000	10	.02	03	.04	.05 (.06	.07	.08) 60.0) []	1.2		.4	.5 ().6	2.0	.8	6.0	-	2	4	9.	8.		5		1.5	-	51	-	-	1
Т	. ເວ	0 26.9	0.10	0 96.83	32.87 0	56.16 U	0 00.65	0 10.14	15.81 0	50.06 0	59.10 0	75.86 0	31.32 0	\$5.93 0	89.93 0	93.49 0	96.69 0	99.61 0	120.21 0	133.52 0	143.61 0	151.83 0	158.83 0	164.95 0	170.41 0	175.35 0	179.88 1	187.96 1	195.04 1	201.37 1	207.11 1	212.38 2	223.95 2	233.85 3	242.56 3	250.35 4	257.44 4	263.94 5	275.59 6	285.83 7

II. Saturation Pressure

										$\overline{\mathcal{O}}$																											
ŝ	kJ/kg-K	5.7450	5.6160	5.4638	5.3106	102150 7	4.4070) S(kJ/kg-ł	7.3588		7.3610	7.6148	7.8356	8.0346	8.2172	8.3866	8.5452	8.6946	8.8361	8.9709	9.0998	9.2234	9.3424	9.4572	9.5681	9.6757	9.7800	9.8813	9.9800	10.0761	10.1697	10.2611	10.3504	10.4376	10.5229
∇S^{nap}	kJ/kg-K	2.5369	2.2553	1.9348	1.6260	05100	0.0000) H(kJ/kg)	2675.0		2675.8	2776.6	2875.5	2974.5	3074.5	3175.8	3278.6	3382.8	3488.7	3596.3	3705.6	3816.6	3929.4	4043.9	4160.2	4278.2	4398.0	4519.5	4642.6	4767.3	4893.5	5021.3	5150.6	5281.2	5413.2
S ^r	kJ/kg-K	3.2081	3.3607	3.5290	3.6846	+40.01 10156	4.4070		(966)	g) U(kJ/kg	2505.6		2506.2	2582.9	2658.2	2733.9	2810.6	2888.7	2968.3	3049.4	3132.2	3216.6	3302.8	3390.7	3480.4	3571.8	3665.0	3760.0	3856.6	3955.0	4055.0	4156.6	4259.8	4364.5	4470.7	4578.3	4687.2
H^{V}	kJ/kg	/28.68	725.49	574.31	510.70	00.420	084.26		0.10MPa	$M(m^3/k)$	1.6939		1.6959	1.9367	2.1724	2.4062	2.6388	2.8710	3.1027	3,3342	3.5655	3.7968	4.0279	4.2590	4.4900	4.7209	4.9519	5.1828	5.4137	5.6446	5.8754	6.1063	6.3371	6.5680	6.7988	7.0296	7.2604
	1	20	ភេ	ä	ää	12	នេ)= 	J°C	99.66		<u>8</u>	150	200	250	300	350	400	450	20	550	000	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300
ΔH_{nap}	kJ/kg	1379.07	1317.43	1162.73	1000.50	585 14	0.00			J/kg-K)	30		953	113	592	568	386	076	559	151	566	913	100	136	525	773	382	57	0001	2014	3000	3960	1897	5811	5703	1576	3428
H_{r}	J/kg		8	.28	56	35	56) S(k	7.59		7.69	7.9	8.15	8.3	8.5	8.7(8.8	0.6	9.13	9.2	4.6	9.5	9.6	6	9.8	9.9	10.	10.	10.	10.	10.4	01	10.0	10.	10.8
	24 j	1317	1408	1511	1610	1877	2084			H(kJ/kg	2645.2		2682.4	2780.2	2877.8	2976.1	3075.8	3176.8	3279.3	3383.5	3489.3	3596.8	3706.0	3816.9	3929.7	4044.2	4160.4	4278.5	4398.2	4519.6	4642.7	4767.4	4893.7	5021.4	5150.7	5281.3	5413.3
U^{V}	KU/K	2570.48	2545.19	2505.61	2455.62	PC.0862	2015.73		(81.3)	U(kJ/kg)	2483.2		2511.5	2585.7	2660.0	2735.1	2811.6	2889.4	2968.9	3049.9	3132.6	3217.0	3303.1	3391.0	3480.6	3572.0	3665.2	3760.1	3856.8	3955.1	4055.1	4156.8	4259.9	4364.6	4470.8	4578.4	4687.3
ΔU^{vap}	kJ/kg	1264.25	1151.65	1013.35	870.27	208 63	0.00		05MPa	$V(m^3/kg)$	3.2400		3.4187	3.8897	4.3562	4.8206	5.2840	5.7469	6.2094	6.6717	7.1338	7.5957	8.0576	8.5195	8.9812	9.4430	9.9047	10.3663	10.8280	11.2896	11.7513	12.2129	12.6745	13.1361	13.5977	14.0592	14.5208
Ω ^r	kJ/kg	1306.23	1393.54	1492.26	1585.35	1786 41	2015.73		P = 0.0	1°C)	81.3		100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1250	1300
hγ	m ³ /kg	0235	0180	.0135	.0103	.00/9	.0031			S(kJ/kg-K)	8,1488	8.1755	8.4489	8.6892	8.9049	9.1015	9.2827	9.4513	9.6094	9.7584	9.8998	10.0344	10.1631	10.2866	10.4055	10.5202	10.6311	10.7386	10.8429	10.9442	11.0428	11.1389	11.2325	11.3239	11.4132	11.5004	11.5857
$P_{\rm T}$	n ³ /kg	385 0	453 0	546 0	657 0	0 000	106 0			H(kJ/kg)	2583.9	2592.4	2687.5	2783.0	2879.6	2977.4	3076.7	3177.5	3279.9	3384.0	3489.7	3597.1	3706.3	3817.2	3929.9	4044.4	4160.6	4278.6	4398.3	4519.7	4642.8	4767.5	4893.7	5021.5	5150.7	5281.4	5413.4
	u	100.0	0.001	0.001	0.001	100.0	0.003	team	5.8)	U(kJ/kg)	2437.2	2443.3	2515.5	2587.9	2661.3	2736.1	2812.3	2890.0	2969.3	3050.3	3132.9	3217.2	3303.3	3391.2	3480.8	3572.2	3665.3	3760.3	3856.9	3955.2	4055.2	4156.8	4260.0	4364.7	4470.9	4578.4	4687.4
d	(MPa	× 0	10	12.5	15	c./1	22.06400	theated S	MPa (4	V(m ³ /kg)	14.6701	14.9139	17.1964	19.5132	21.8256	74.1361	26.4456	28.7545	31.0631	33.3714	15.6796	37.9876	10.2956	12.6035	14.9113	17.2191	19.5269	51.8347	54.1424	56.4501	58.7578	51.0655	53.3732	55.6808	57.9885	70.2961	72.6038
Т	())	295.01	311.00	327.81	342.16	10.400	373.95	III. Supe	P = 0.01	1(°C)	45.8	50	100	150	200	250 2	300	350	400	450	500	550	ę00	650 4	700	750 4	800	850	006	950	1000	1050 6	1100	1150 €	1200	1250	1300

	S(kJ/kg-K	6.8955	200000	7.3804	7.5677	7.7399	7.9002	8.0508	8.1933	8.3287	8.4580	8.5820	8.7012	8.8162	8.92/5	9.0350	9.1394	9.2409	9.3396	9.4357	9.5295	9.6209	9.7102	9.7975	9.8828		S(kJ/kg-K	6 6616	6.8176	7.0401	7.2345	7.4106	7.5734	7.7257	7.8692	8.0054	8.1354	8.2598	8.3794	8.4947	8.6001 0.7120	2010 0	C010.0
	H(kJ/kg)	2738.1	0.7512	2964.5	3067.1	3170.0	3273.9	3379.0	3485.5	3593.6	3703.2	3814.6	3927.6	4042.4	4158.8	4277.0	4396.9	4518.5	4641.7	4766.5	4892.8	5020.7	5150.0	5280.7	5412.8		H(kJ/kg)	7768 3	78397	2950.4	3056.9	3162.2	3267.6	3373.9	3481.3	3590.0	3700.1	3811.9	3925,3	4040.3	4157.0	3 20Cr	0.0464
(143.6)) U(kJ/kg)	2553.1	4740CZ	2726.4	2805.1	2884.4	2964.9	3046.6	3129.8	3214.6	3301.0	3389.1	3479.0	3570.6	3663.9	3759.0	3855.7	3954.2	4054.3	4155.9	4259.2	4363.9	4470.1	4577.8	4686.7	(170.4)	N U(KJ/kg)	2576.0	2631.0	2715.9	2797.5	2878.6	2960.2	3042.8	3126.6	3211.9	3298.7	3387.1	3477.2	3569.0	3662.4	0./0/2	G.4C85
40MPa	V(m ³ /kg	0.4624	0.4109	0.5952	0.6549	0.7140	0.7726	0.8311	0.8894	0.9475	1.0056	1.0636	1.1215	1.1794	1.2373	1.2951	1.3530	1.4108	1.4686	1.5264	1.5841	1.6419	1.6997	1.7574	1.8152	80MPa	V(m ³ /ko	0 2402	0047.0	0 2932	0.3242	0.3544	0.3843	0.4139	0.4433	0.4726	0.5019	0.5310	0.5601	0.5892	0.6182	0.04/2	0.0/02
P = 0.4	<i>π</i> °C)	143.6	000	250	300	350	400	450	500	550	600	650	200	750	800	850	<u>800</u>	950	1000	1050	1100	1150	1200	1250	1300	P = 0	Π°C)	170.4		250	300	350	400	450	500	550	600	650	002	750	008	0000	006
	S(kJ/kg-K)	6.9916	12/07	7.5180	7.7037	7.8750	8.0347	8.1849	8.3271	8.4623	8.5914	8.7153	8.8344	8.9494	9.0604	9.1680	9.2724	9.3739	9.4726	9.5687	9.6624	9,7538	9.8431	9.9303	10.0156		S(kJ/ke-K)	6 7503	6 0623	7 1832	7 3740	7.5481	7.7097	7.8611	8.0041	8.1399	8.2695	8.3937	8.5131	8.6283	8.7395	8.8472	8.9518
	H(kJ/kg)	2724.9	2.1012	2967.9	3069.6	3172.0	3275.5	3380.3	3486.6	3594.5	3704.0	3815.3	3928.2	4042.9	4159.3	4277.4	4397.3	4518.8	4642.0	4766.7	4893.1	5020.9	5150.2	5280.9	5412.9		H(k]/kø)	7756 1	1.0012	2057 6	3062.0	3166.1	3270.8	3376.5	3483.4	3591.8	3701.7	3813.2	3926.4	4041.3	4157.9	4276.2	4396.2
(133.5)	U(kJ/kg)	2543.2	0.1762	2728.9	2807.0	2885.9	2966.0	3047.5	3130.6	3215.3	3301.6	3389.7	3479.5	3571.0	3664.3	3759.3	3856.0	3954.4	4054.5	4156.2	4259.4	4364.1	4470.3	4577.9	4686.9	(158.8)	(//kI/kø)	0 7756	0.0012	C 1020	2801 4	2881.6	2962.5	3044.7	3128.2	3213.2	3299.8	3388,1	3478.1	3569.8	3663.2	3758.3	3855.1
30MPa	V(m ³ /kg)	0.6058	0400.0	0.7964	0.8753	0.9536	1.0315	1.1092	1.1867	1.2641	1.3414	1.4186	1.4958	1.5729	1.6500	1.7271	1.8042	1.8812	1.9582	2.0352	2.1122	2.1892	2.2662	2.3432	2.4202	60MPa	Wm ³ /ro)	0.3155	0.15.0	12020	0 4344	0.4743	0.5137	0.5530	0.5920	0.6309	0.6698	0.7085	0.7472	0.7859	0.8246	0.8632	0 0018
P = 0	7(°C)	133.5		250	300	350	400	450	500	550	009	650	200	750	800	850	006	950	1000	1050	1100	1150	1200	1250	1300	P = 0	7/°C)	0 0 2 1	200	250		350	400	450	200	550	600	650	700	750 .	800	850	006
1	S(kJ/kg-K)	7.1269	7 5081	7.7100	7.8941	8.0644	8.2236	8.3734	8.5152	8.6502	8.7792	8.9030	9.0220	9.1369	9.2479	9.3555	9.4598	9.5612	9.6599	9.7560	9.8497	9.9411	10.0304	10.1176	10.2029		Stk1/ko-K)		7 0210	D100.1	7 4614	7 6346	7 7955	7.9465	8 0892	8.2249	8.3543	8.4784	8.5977	8.7128	8.8240	8.9317	9 0362
	H(kJ/kg)	2706.2	1.0712	2971.2	3072.1	3173.9	3277.0	3381.6	3487.7	3595.4	3704.8	3815.9	3928.8	4043.4	4159.8	4277.8	4397.6	4519.1	4642.3	4767.0	4893.3	5021.1	5150.4	5281.1	5413.1		H(k1/ka)	(q)	2/40.1	01900	3064.6	3168.1	3777 3	7 77 5	3484 5	3592.7	3702.5	3813.9	3927.0	4041.8	4158.4	4276.6	4396.6
120.3)	U(kJ/kg)	2529.1	7777	2731.4	2808.8	2887.3	2967.1	3048.5	3131.4	3215.9	3302.2	3390.2	3479.9	3571.4	3664.7	3759.6	3856.3	3954.7	4054.8	4156.4	4259.6	4364.3	4470.5	4578.1	4687.0	151.8)	IllkI/ka)		1.0002	2772 2	2803.2	2883.0	2963 7	3045.6	3129.0	3213.9	3300.4	3388.6	3478.5	3570.2	3663.6	3758.6	3855 4
MPa (V(m ³ /kg)	0.8857	1 0805	1.1989	1.3162	1.4330	1.5493	1.6655	1.7814	1.8973	2.0130	2.1287	2.2443	2.3599	2.4755	2.5910	2.7066	2.8221	2.9375	3.0530	3.1685	3.2839	3.3994	3.5148	3.6302	MPa ([// ³ //)	0,7740	0.3740	0175-0	0 5026	0.5702	0.6173	0.6642	0 7109	0.7576	0.8041	0.8505	0.8970	0.9433	0.9897	1.0360	1 0823
P = 0.20	T(°C)	120.3	000	250	300	350	400	450	500	550	600	650	700	750	800	850	006	950	1000	1050	1100	1150	1200	1250	1300	P = 0.50	10°T		0.101	007	200	350	400	450	2005	550	600	650	700	750	800	850	000

	, K	Ϋ́,
9.0189 9.1151 9.2089 9.3004 9.3898 9.4771 9.5625	S(kJ/kg- 6.4675 6.4975 6.4975 6.9758 6.9582 7.1379 7.14594 7.14594 7.9823 8.2340 8.3440 8.3587 8.3440 8.3587 8.3440 8.3587 8.3440 8.3587 8.3587 8.34407 8.5587 8.35584 8.3497 8.5587 8.3497 8.5587 8.3497 8.5587 8.3497 8.35587 8.3497 8.35587 8.3497 8.35587 8.3497 8.35587 8.3497 8.35587 8.3497 8.3467 8.347 8.3467 8.34	S(kJ/kg- 6.3390 6.5475 6.5475 6.5475 6.5475 7.1292 7.1292 7.1292 7.1292 7.1292 7.143 7.5725 7.5725 7.5725 7.5725
4640.5 4765.4 4891.9 5019.8 5149.2 5280.0 5412.2	H(kJ/kg) 2788.9 22803.0 22803.0 3040.9 3366.1 3356.1 3356.1 3356.1 3356.1 3356.1 3356.1 3356.1 3356.1 3356.1 3357.9 4137.2 4137.	H(kJKg) 2798.3 2798.3 3137.7 3137.7 3138.2 3138.2 3138.2 3138.2 31468.2 33690.7 3690.7 3803.8
4053.2 4155.0 4258.3 4363.1 4469.4 4577.1 4686.1	(195.0) U(kJ/kg) 2591.8 2592.7 2602.7 2602.7 2602.7 2002.7 2002.7 2002.7 2002.7 2002.7 2002.7 2002.7 2002.7 3037.0 3175.6 3175.7 3175.6 3175.7 3175.6 3175.6 3175.7 3175.6 3175.7 3175.6 3175.7 3175.6 3175.7 3175.6 3175.7	(212.4) U(kJ/kg) 2599.1 2680.2 2860.5 28773.2 2860.5 2860.5 2860.5 301.1 3116.9 303.6 3291.5 3291.5 3380.8
0.7341 0.7630 0.7920 0.8209 0.8498 0.8787 0.9076	0MPa <i>V</i> (m ³ /kg) 0.1408 0.1408 0.1436 0.1823 0.1823 0.2522 0.2522 0.2518 0.2695 0.3695 0.3695 0.3695 0.3695 0.3695 0.3695 0.4359 0.4359 0.4359 0.4359 0.4359 0.4359 0.4525 0.3652 0.3552 0.	0MIPa <i>Y</i> (m ³ /kg) 0.0996 0.1115 0.1255 0.1255 0.1512 0.1512 0.1512 0.1512 0.1535 0.1557 0.1557 0.1557 0.1557 0.1557 0.1557 0.1557 0.1557 0.1557 0.1552 0
1000 1050 1150 1150 1250 1300	P = 1.4 $P = 1.4$ $P =$	P = 2.0 7(°C) 250 350 350 450 450 550 550 550 550 550 550
9.1521 9.2482 9.3420 9.4335 9.5228 9.6101 9.6954	S(kJ/kg-K) 6.5217 6.5217 6.5313 7.0335 7.1793 7.1793 7.1793 7.1793 7.1793 7.1793 7.1793 7.1793 7.1793 7.1793 7.1793 7.1799 7.1793 8.1904 8.1704 8.1704 8.1904 8.1904 8.1904 8.1706 7.9455 7.1719 7.8150 7.9455 8.1904 8.1706 8.1709 7.9455 7.1719 7.8150 7.9455 7.9712 8.9713 9.0212 9.2022 9.2022 9.2022 9.2149 9.214	S(kJ/kg-K) 6.3775 6.6087 6.6087 6.6087 6.8246 6.8246 7.0120 7.1380 7.1380 7.1543 7.1543 7.1543 7.1543
4641.1 4766.0 4892.4 5020.3 5149.6 5280.4 5412.5	H(kJ/kg) 2783.7 2783.7 22816.1 22816.1 3366.3 33697.0 33697.0 33697.0 33697.0 33697.0 33697.0 33697.0 33697.0 33697.0 3408.2 4155.2 555.2	H(kJ/kg) 2795.9 2911.7 3141.8 3141.8 3141.8 3360.9 3470.4 3580.8 3692.3 3805.1
4053.7 41553.5 4258.7 4363.5 4469.8 4577.4 4686.4	(188.0) U(kJ/kg) 2587.8 25612.9 2612.9 2612.9 2012.9 2012.9 3038.9 3038.9 3038.9 3038.9 3056.3 3385.0 3756.3 3385.0 3756.3 3385.0 3756.3 3355.0 3756.3 3557.5 4154.1 4154.1 4154.1 4154.1 4154.1 4556.4 4576.4	(207.1) U(kJ/kg) 2597.2 2586.7 2777.4 2777.4 2586.7 2586.7 2586.7 2586.7 2586.7 3033.1 3118.5 3205.0 3205.0 3381.9
0.9789 1.0175 1.0560 1.0946 1.1331 1.1716 1.2101	20MPa Y(m ³ /kg) 0.1653 0.1653 0.1653 0.1653 0.1693 0.2139 0.2346 0.2148 0.2148 0.2148 0.2148 0.2148 0.2148 0.3335 0.3355 0.3355 0.3555 0.3555 0.3555 0.3555 0.5565 0.5	80MPa Y(m ³ /kg) 0.1104 0.1250 0.1402 0.1546 0.1546 0.1546 0.1685 0.1821 0.1955 0.2088 0.2351
1000 1050 1150 1150 1250 1300	$P = 1.$ $P = 1.$ $T(^{\circ}C)$ $T(^{\circ}C)$ 188.0 2200 2	$P = 1.$ $T(^{\circ}C)$ $T(^{\circ}C)$ 207.1 207.1 200.1 200 500 500 500 500 500 500 500
9.2364 9.3326 9.4263 9.5178 9.6071 9.6071 9.6944	S(LJ/kg-K) 6.5850 6.5855 6.9265 6.9265 7.12466 7.12466 7.1641 7.9008 8.1557 8.1557 8.1557 8.150 8.1555 8.155 8.150 8.1556 8.103 8.1555 8.1150 8.1150 8.1150 8.1150 8.1155 8.27555 8.27555 8.27555 8.27555 8.27555 8.27555 8.27555 8.275555 8.27555 8.275555 8.275555 8.27555555555555555555555555555555555555	S(kJ/kg-K) 6.4199 6.6753 6.6753 6.8863 7.2394 7.2394 7.2394 7.2394 7.2394 7.2394 7.5788 7.5788 7.5788 7.5788 7.5788 7.5788
4641.4 4766.2 4892.6 5020.5 5149.8 5280.5 5412.6	H(kJ/kg) 22777.1 22777.1 22828.3 30516.1 3058.6 3158.2 3371.3 3371.3 3371.3 3371.3 3371.3 3371.3 3371.3 3371.3 3371.3 3371.3 3371.3 3371.3 3371.5 3371.5 413.6 414.6 414.6 415.6 415.6 415.6 415.6 415.6 415.6 415.6 415.6 415.6 410	H(KJ/Kg) 2792.8 2146.0 3146.0 3254.9 3353.5 3472.6 3693.9 3806.5 3806.5
4054.0 4155.7 4259.0 4363.7 4470.0 4577.6 4686.6	(kJ/kg) U(kJ/kg) 2582.8 2622.2 2622.2 2622.2 2622.2 3040.9 3040.9 3040.9 3051.0 33105.0 3355.0 3555.0 355	201.4) U(KJ/Kg) U(KJ/Kg) 2594.8 2692.9 2781.6 2950.7 2950.7 3026.5 3026.3 3226.3 3226.3 3226.3 3226.3 3226.3 3322.9 3322.9
1.1748 1.2210 1.2673 1.3135 1.3597 1.4059 1.4521	JMPa 1 V(m ³ /kg) 0.1944 0.1944 0.2060 0.2580 0.2382 0.2580 0.2382 0.2841 0.2382 0.3377 0.3364 0.3377 0.4418 0.4478 0.4411 0.3777 0.4411 0.3777 0.4411 0.3777 0.4418 0.4478 0.4411 0.3776 0.4411 0.3777 0.4411 0.3777 0.4478 0.4718 0.4411 0.5540 0.5540 0.5540 0.5567 0.5572 0.5672 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.5567 0.70330 0.7261	0MPa (Y(m ³ /kg) 0.1237 0.1237 0.1387 0.1466 0.1587 0.1587 0.1587 0.1501 0.2533 0.22500 0.2550 0.2550 0.2550 0.2550 0.2560
1000 1050 1150 1250 1300	$P = 1.0$ $T(^{\circ} C)$ $T(^{\circ} C)$ $T(^{\circ} C)$ 2200 330 330 550 550 550 550 550 750 550 750 750 750 11000 11150 11100 1100 1100 1100 1100 1100 1100 1100 1100 1	$P = 1.6$ $T(^{\circ}C)$ $T(^{\circ}C)$ $T(^{\circ}C)$ 2201.4 2201.4 3300 3300 3300 3300 3500 5500 5500 6500 6500

7.9509	8.1790	8.2874	8.3925 2404 e	0.4945 8 5936	8.6901	8.7842	8.8759	8.9654	9.0529	9.1384		S(kJ/kg-K)	6.1243	6.1764	6.4484	6.6601	6.8427	7.0074	7.1593	7.3014	7.4356	550C./	7.0034	/702/	00167	0.024/	0.1202	8 3374	8 4797	8.5235	8.6155	8.7053	8.7929	8.8785			S(kJ/kg-K)	5.9737 6.2110	6.4516	6.6483 6.8210
.3918.2	4151.5	4270.5	4391.1	4637.0	4762.3	4889.1	5017.3	5147.0	5278.0	5410.3		H(kJ/kg)	2802.6	2829.7	2978.4	3104.8	3223.2	3338.0	3451.6	3565.0	3678.9	C.5975	5,9095	4020.5	4144.0	47064	1500.1	4637 7	4758 4	4885.6	5014.1	5144.1	5275.4	5408.0			H(kJ/kg)	2794.2	3069.3	3196.7 3317.2
3471.6	3658.0	3753.6	3850.9	4050.7	4152.2	4255.7	4360.7	4467.2	4575.0	4684.1	(242.6)	U(kJ/kg)	2602.9	2624.0	2738.8	2836.0	2927.2	3016.1	3104.5	3193.1	3282.5	5572.9	3464.7	302/2	202705	5/46.0	2040.4	40464	4148 7	4252.5	4357.7	4464.4	4572.4	4681.7	10 1717	(6,002)) U(kJ/kg)	2597.0 2699.0	2809.5	2907.5 3000.6
0.2233	0.2467	0.2584	0.2.0	0102.0	0.3051	0.3167	0.3283	0.3399	0.3515	0.3631	50MPa	$V(m^3/k_B)$	0.0571	0.0588	0.0685	0.0768	0.0846	0.0920	0.0992	0.1063	0.1133	0.1202	0.1270	0.1338	0.1400	0.14/4	1401.0	0.1675	0 1747	0 1809	0.1875	0.1942	0.2009	0.2075		JUINIFa	V(m ³ /kg	0.0394	0.0520	0.0578 0.0633
700	008	850	006	0001	1050	1100	1150	1200	1250	1300	P = 3.5	7(°C)	242.6	250	300	350	400	450	500	550	009	650	002	05/	0000		000		1050	1100	1150	1200	1250	1300			1°C)	263.9 300	350	400 450
8.0004	8.2284	8.3367	8.4416	0.0406 8 6476	8.7391	8.8331	8.9248	9.0143	9.1017	9.1872		S(kJ/kg-K)	6.1856	6.2893	6.5412	6.7449	6.9234	7.0856	7.2359	7.3768	7.5103	7.6373	7.7590	7.875	7.9885	8.0975 8.070	0707.0	1000.0 8 4045	8 5012	21000 8 5955	8.6874	8.7770	8.8646	8.9502			S(kJ/kg-K)	6.0197 6.2854	6.5153	6.7070 6.8770
3919.4	4152.4	4271.3	4591.9	4637.6	4762.8	4889.5	5017.7	5147.3	5278.3	5410.6		H(kJ/kg)	2803.2	2856.5	2994.3	3116.1	3231.7	3344.8	3457.2	3569.7	3682.8	3796.9	3912.2	4028.9	4146.9	2.0024	10131	1.0104	17507	4886 7	5015.2	5145.0	5276.2	5408.8			H(kJ/kg)	2798.0 2944.7	3081.5	3205.6 3324.2
3472.6	3658.8	3754.3	C.1C85	40507	4152.7	4256.2	4361.1	4467.5	4575.3	4684.5	(233.9)	U(kJ/kg)	2603.2	2644.7	2750.8	2844.4	2933.5	3021.2	3108.6	3196.6	3285.5	3375.6	3467.0	3559.9	3654.3	5.00/5	0041.9	7 7 404	4140.0	4753.6	4358 7	4465.3	4573.3	4682.5		(+-/ C7)	U(kJ/kg)	2599.7 2713.0	2818.6	2914.2 3005.8
0.2482	0.2743	0.2872	121020	1616.0	0.3390	0.3519	0.3648	0.3777	0.3905	0.4034	.00MPa	$V(m^3/kg)$	0.0667	0.0706	0.0812	0.0906	0.0994	0.1079	0.1162	0.1244	0.1324	0.1405	0.1484	0.1563	0.1642	0.1700	55/170	0.1055	0.0033	11100	0.2188	0.2266	0.2343	0.2421		.DUMPa	$V(m^3/kg)$	0.0441	0.0584	0.0648 0.0708
700	008	850	006	0001	1050	1100	1150	1200	1250	1300	P = 3	() 20)/L	233.9	250	300	350	400	450	500	550	600	650	00	052	0000	850	000	0001	1050	0011	1150	1200	1250	1300	£	ר ש ל	Д°С)	257.4	350	400 450
8.0557	8.2834	8.3916	8.4965 0.5004	8.6974	8.7938	8.8878	8.9794	9.0689	9.1563	9.2417		S(kJ/kg-K)	6.2558	6.4107	6.6459	6.8424	7.0170	7.1767	7.3254	7 4653	7.5979	7.7243	7.8455	7.9620	8.0743	8.1830	7007.0	9.4806	0.000	8 6804	8 7777	8.8618	8.9493	9.0349			S(kJ/kg-K)	6.0696 6.3630	6.5843	6.7714 6.9386
3920.5	4153.3	4272.2	4592.6	4638.2	4763.4	4890.0	5018.2	5147.7	5278.7	5410.9		H(kJ/kg)	2801.9	2880.9	3009.6	3127.0	3240.1	3351.6	3462.7	3574.3	3686.8	3800.4	3915.2	4031.5	4149.2	4208.5	5.755	7.1164	0 1927	0.1014	5016.2	5146.0	5277.1	5409.5			H(kJ/kg)	2800.8 2661 7	3093.3	3214.5 3331.2
3473.5	3659.5	3755.0	3852.1	4051 2	4153.1	4256.6	4361.5	4467.9	4575.7	4684.8	224.0)	U(kJ/kg)	2602.1	2663.3	2762.2	2852.5	2939.8	3026.2	3112.8	3200.1	3288.5	3378.2	3469.3	3562.0	3656.2	3752.0	5849.4	4046.4	1510	27547	11507	4466.2	4574.1	4683.3		(4.002	U(kJ/kg)	2601.7	2827.4	2920.7 3011.0
0.2794	0.3087	0.3232	0.3578	6995 0	0.3814	0.3959	0.4104	0.4249	0.4394	0.4538)MPa (V(m ³ /kg)	0.0799	0.0871	0.0989	0.1098	0.1201	0.1302	0.1400	0.1497	0.1593	0.1689	0.1783	0.1878	0.1972	0.2066	0.2150	2622.0		0.7533	0.2626	0.2719	0.2812	0.2905		JMPa ($V(m^{3}/kg)$	0.0498	0.0665	0.0734 0.0800
700	800	850	006	1000	1050	1100	1150	1200	1250	1300	P = 2.5(7(°C)	224.0	250	300	350	400	450	500	550	600	650	200	750	800	820	005	0001	1050	0011	1150	1200	1250	1300		<i>P</i> = 4.0(10°) 7	250.4 300	350	400 450

Section E.6 Properties of Water 689

													à	4																				
6.9781 7.1237 7.2605	7.3901	7.6320	7.7458	00000/	8.0648	8.1648	8.2620	8.3566	8.4488	8,6766	8.7124		COLUNA	J(KJ/KB	004/.C	1061.0	1761.0	0.0000	6100.0	6.8799	7.0221	7.1556	7.2821	1 41040	1010'Y	1270.1	11077	10110	8 0397	0 1250	00001-0	8.3181	8.4063	8.4924
3434.7 3550.9 3666.8	3783.2 3900 3	4018.4	4137.7	C 00076	4503.6	4628.3	4754.5	4882.0	0.1105	5777 2	5405.7		LIN-IN-	D(KJ/KB)	1.8612	0007	1.0047	2,772,2	30055	3521.8	3642.4	3762.3	3882.2	9.7004	0.0214	4240.0	0.2004	20124	07467	0 3201	5004.6	5135.5	5267.7	5401.0
3091.7 3182.4 3273.3	3365.0	3551.6	3646.9	3841.9	3941.5	4042.6	4145.2	4249.3	4354.8	4461.0	4679.3	(295.0)	Tra-Tra-	U(KJ/KB)	C.0/ CZ	5.2402	5 4900	0.4082	201052	3160.5	3254.7	3348.9	3443.6	1.7555	2022./	2,0010	0.7000	1.0040	0.0004	7.0011	0.2424	4456.1	4564.6	4674.5
0.0686 0.0737 0.0787	0.0836	0.0934	0.0982	0.1077	0.1124	0.1171	0.1219	0.1266	0.1312	0.1305	0.1453	MPa	30	V(m'/kg)	0.0235	0.0243	0.0347	0.0345	2020.0	0.0452	0.0485	0.0517	0.0548	6/50.0	0100.0	0.0041	1/00/0	10/0.0	16/0.0	10/0/0	06/00	0.0049 0.0849	0.0879	0.0908
500 550 600	650	750	800	000	950	1000	1050	1100	1150	1200	1300	P = 8.00		(γ_{i})	295.0	005	005	400	003	550	009	650	200	06/	800	000	006	000	1000	0011	0011	0021	1250	1300
													S	2																				
7.0323 7.1767 7.3127	7.4416	7.6826	7.7962	1006.1	8.1146 8.1146	8 2144	8.3115	8.4060	8.4981	8.5880	8.7615			S(kJ/kg-	5.8148	5.9337	6.2304	6.4502	0.0305	0.0000 6 9506	7.0910	7.2231	7.3486	7.4685	7.5836	7.0944	7.8014	0506.1	cc00.8	0.1001	8.1981	0182 8	8 4690	8.5551
3440.4 3555.6 3670.9	3786.6	4021.0	4140.0	4260.3	4505.2	4679.8	4755.8	4883.2	5012.0	5142.2	5406.4			H(kJ/kg)	2772.6	2839.9	3016.9	3159.2	5288.5	35316	3650.6	3769.3	3888.2	4007.9	4128.4	4250.1	4373.0	4497.1	4622.5	4/49.5	4877.3	5137 A	10905	5402.6
096.0 186.0 276.4	367.7	553.7	648.8	745.3	542.5 947 8	0 2 0	1146.4	1250.4	1355.8	1462.5	1.0891	785 8)	6.007	U(kJ/kg)	2581.0	2633.5	1.0/12	2879.5	0.679.0	0.4.0	3260.9	3354.3	3448.3	3543.3	3639.5	3736.9	3835.7	3935.9	4037.5	4140.5	4245.0	435U.8 4457 D	7 9950	4676.1
10 m m	. m e	<u>י</u> י ר	m (·	n e.		ি ব	ч	4	4				~ ශු							1.5.1								•	•	•			
0.0765 0.0821 0.0877	0.0931	0.1038	0.1092	0.1145	0.1750	0 1302	0.1354	0.1406	0.1458	0.1510	0.1614	- MMD-	DUINTE G	M(m)∕/	0.0274	0.0295	0.0353	0.0400	0.0442	0.0482	0.0557	0.0593	0.0629	0.0664	0.0699	0.0733	0.0768	0.0802	0.0836	0.0870	0.0903	1500.0	0,001	0.1038
500 550	650	750	800	850	006	1000	1050	1100	1150	1200	1300	0 - 7 (7(°C)	285.8	300	350	400	450	000	009	650	700	750	800	850	006	950	1000	1050	1100	1150	1050	1300
													1	Q																				
7.0922 7.2355 7.3705	7.4988	7.7390	7.8523	7.9616	8.0674 8.1701	2090 8	8.3667	8.4611	8.5532	8.6430	8.8164			S(kJ/kg-	5.8901	6.0703	6.3357	6.5432	6.7219	070202	1050.1	7.3001	7.4246	7.5438	7.6582	7.7685	7.8751	7.9784	8.0786	8.1760	8.2709	8.3632	0.4334	8.6272
446.0 560.3 674 9	790.1	900.5 023.6	142.3	262.4	383.9 506.8	631.2	757.1	884.4	013.1	143.1	274.5			f(kJ/kg)	784.6	885.5	043.9	178.2	302.9	423.1	C 859	776.2	894.3	1013.2	1133.1	1254.2	1376.6	1500.3	1625.4	1751.9	1879.7	5008.9	C.YCI0	5404.1
n n r	i in i	04	4	4	4.4	r <	14	4	ŝ	ŝ	ሳጥ				6	2	ŝ	~		γ η Γ	<u>י</u> ה	о ст	. m	4	J	4	ч	ч	ব	4	4	4) 4		
3100.3 3189.5 3770.4	3370.3	3555.8	3650.6	3747.0	3844.8	1 2 1 1 2 1 1	4147.5	4251.4	4356.7	4463.5	4571.5	C SLU	(0.012)	UCKIN	2589.9	2668.4	2790.4	2893.7	2989.9	3083.1	216716	3359.6	3453.0	3547.5	3643.2	3740.3	3838.8	3938.7	4040.1	4142.9	4247.1	4352.8	5.4073v	4677.7
0.0864 0.0927	0.1049	0.1170	0.1229	0.1289	0.1348	39110	0.1524	0.1582	0.1641	0.1699	0.1757 0.1816	00	JMFa	$V(m^3/kg)$	0.0324	0.0362	0.0423	0.0474	0.0522	0.0567	0.0653	0.0694	0.0735	0.0776	0.0816	0.0857	0.0896	0.0936	0.0976	0.1015	0.1054	0.1093	0.1133	0.1211
500 550	650 50	750	800	850	900	0001	1050	1100	1150	1200	1250 1300		JV-0 = 1	7°C)	275.6	300	350	400	450	200	000	650	700	750	800	850	900	950	1000	1050	1100	1150	1200	1300