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OUTLINE

Goal today is to try to attain a basic understanding of how the climate of the earth

Is determined

Incident radiation by sun

* Earth radiates back

* Atmosphere is absorbing and re-emitting

 Large-scale natural convection flows in atmosphere cause mixing

- Water evaporation and condensation is very important (clouds...

B GIccan currents carry heat around. ..
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Figure 3: World Climate History According to IPCC in 1990.




it NOCKEY STICHES

This figure catalyzed various actions and processes that made the climate a high intensity, contentious topic
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Spectral radiance (KW - sr™* - m™2 - nm™)
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el [ REALLY LIKE: ENERGY (IM)BAES NS

Earth’s Energy Balance

Absorbed Sunlight

5/4 *(|-albedo)
M

Need comparative fluxes over decades



SOLAR RADIATION

Solar Radiation Spectrum
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SOLAR FLUX
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- Evaporation rate for water would be:

-:1.4k)/s/mr2 / (40.65kI /molemole/ .018 /kg) / (1000 kg /mA 3)

6.19926x10 ' m
[ s

-% /. {m-> 1000mm, s-» 1/3600hr}

i 2.23173 mm
[ hr

« This explains why solar power is limited, but also that this flux must be essentially
balanced by the outgoing radiation



TEMPERATURE PURE RAD\ATION

A Model based on the Schwarzschild equation for an optically thick atmosphere

Schwarzchild’s Equation
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« Radiative

perturbations (e.g,
@Y
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The Earil’s natural greenhouse effect “wants” to miake the Earth's surface unbearably hot,

bul the cooling effects of weather prevent most of that warming from occurring.



RET PROCESS

» Without atmospheric absorption, the earth
temperature would be ~0 F instead of ~59 F

» Re-absorption of Infra-red wavelengths by water,
carbon dioxide and methane constitute the
B hholse effect.
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"RADIATIVE" CONTRIBUTION
ERCOT O
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BETERMINATION OF CLIMS.
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preC | Or LATHTOSS

« Atmospheric/oceanic circulation processes cause a large flow of heat
from the low latritudes to higher latitudes.
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* [he ocean currents have various (significant)

osclllations that vary on the scale of years and
decades
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London, England in winter. Quebec City, Quebec in winter.



L IrC DECADSS
OSCILLATION

PDO index values: January 1900 - January 2017

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010



ATMOS

A: Tropopause in arctic zone
B: Tropopause in temperate zone

Mid-latitude cell

Hadley cell

Hadley cell

Mid-latitude cell

PHERIC CIRCULATION

Altitude (km) 15—

Polar cell
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* You may have noticed that precipitation processes
come with some associated clouds(!)

» Clouds can be erther cooling or warming, although
‘moderating’ might be a nominal result

 We don't understand this well and we have no idea
how the clouds have changed over the 20th
@Emiury



e eC | Or CLOUESS.

HOW NEGATIVE CLOUD FEEDBACK HOW POSITIVE CLOUD FEEDBACK
WORKS WORKS

0, i
Incréasing 840 Decreasing e
«Llouds lets in! d Clouds letsiin 8
Less Sunlig More Su ht!
i Even
Weaker
Warming

We don't know which it Is?



EFFECT OF WEATHER

B Nioted In the ‘green line” from d2euisiE

minutes ago, the processes of weather mix the
atmosphere, contribute to water evaporation,
cloud formation and destruction and cause a

net cooling, although the higher latitudes are
warmed.
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B chimiont worry about ocean pH, Ice extERREE

ISl TEequency. . .

B Illce [t gets the most attention, let's focus of

temperature for a while
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Carbon dioxide concentration (ppmv)
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MRECENT TEMPERAIRTIRIES
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Figure 3: World Climate History According to IPCC in 1000
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FEARTH STATIONS V. SATELLITES

1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018

09 l L) l 11 l el | l [ 1 I ETET S BT AT AT A A l B I 11 0.9
~| Sateliite observations (QC1) and surface stations (QC2+QC3) =
08 — — 0.8
0.7 — ‘II — 0.7
06 — (! — 0.6
2 05— ‘ ‘ | os
] a3 \ -l =
T 04 — ‘ l £ — 0.4
é‘ 03 — A\ ) AN '”1‘ i 03
— b ST, L Vo =N
s 02 — | '\ LA ul,.mu..!; i I {02
> 0.1 — \ f ' v 1 2— 0.1
T LIS N ] :
% 0 — | \| )fg . l"l’l g | J — 0
g 01— Mkl N w1 - 01
= o el T e ] S
§ 02— ¥ , . A ‘ ! — 02
03 — 1 1'NT — 0.3
- : -
-04 — ‘ — -0.4
05 —| Bue Average UAHMSUandRSSMSU@CY) [ g5
06 __: Red. Avetage HadCRUT4A GISS and NCDC (QC2+QCY) :—_ -O 6
6 04 Average surface stations menus average sateliite observations, monthly and 37-month running average 04
o 0O .
]
§ 0.2 | — 0.2
ety i o | S .'I
§ 0 y 1t r .l" r 0
= |
= 02 02
L
s 04 04
=

ITI]II]I1]I1]ITTTT]TT]TI]IITTIITI[ITIITI.
1979 1982 1985 1988 1991 1994 1997 2000 2003 2006 2009 2012 2015 2018
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Station Data: Highmore 1 W (44.5 N,99.5 W)
Highmore 1 W
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i DIRECT EFFECT O G @
INEREASE CAN BESEEN

Day v. Night Temps (nights got warmer during [950-1997/)
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Easerling e al. (1%97). Decreases are in blue and increases in red. This data st of maximum and minimam temperature differs from and
has more restricted coverage than those of mean temperature wsed elsewhere in Secton 2.2,



410 lIII[IIllIll[IllllllllllllllllllllIIIllllll

410
—{ Atmospheric CO5; monthly and 37 month average o
400 — Mauna Loa Hawaii S — 400
-] 5
390 — § — 390
— @ —_—
o
380 — — 380
é 370 — — 370
ON I -
O 360 — — 360
L2 = I
2 350 — — 350
Q.
2 —] -
E 340 — — 340
< ] -
330 — — 330
320 — — 320
310 — — 310

300 , 300

- T T T T T T T T YT Y™ T T Y v v v v v v v

(@) Monthly concentrations since March 1958; thin line, monthly val-
ues; thick line, simple running 37-month average, nearly correspond-
ing to a running 3-yr average.




SEA LEVEE

Global Average Absolute Sea Level Change, 1880-2014
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Data sources:

+ CSIRO (Commonwealth Scientificand Industrial Research Organisation). 2015 update to data originally published in: Church,
JA., and N.J. White. 2011. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32:585-602.

www.cmar.csiro.au/sealevel/sl_data_cmarhtml.
« NOAA (National Oceanic and Atmospheric Administration). 2015. Laboratory for Satellite Altimetry: Sea level rise. Accessed

June 2015. http://ibis.grdl.noaa.gov/SAT/SealevelRise/LSA_SLR_timeseries_global.php.

For more information, visit U.S. EPA’s “Climate Change Indicators in the United States” at www.epa.gov/climatechange/indicators.



CHANGES IN GREENHOUSE GASES FROM ICE CORE AND MODERN DATA
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EOVVHAT ARE THE 1558

o

« WIll the temperature continue to increase and If so, at what rate!?

(depending on rate of CO2 emissions)

?

* The only way to access this is by computer models of the climate!

* How will precipitation be affected?

» WIll crop yields be affected!

« Does the CO?2 in the atmosphere cause a change in ocean pH and affect

marine life
* Wil the sea level increase at a higher rate?

 Could anything (actually) be done about the CO2 emissions!



SOME MUSINGS

* Missing Carbon(http://www.nature.com/climate/200//0/08/full/climate.2007/.35.html)

* Things we thought we knew:
« Margarine was considered a health food
» Stomach Ulcers are caused by stress
» Plants absorb CO2 and emit O2
 The adult brain has no capacity to regenerate itself
» Komodo Dragons bit their prey and waited for them to succumb to bacterial infections

* Planets, other than earth, that are in “Goldilocks” orbits around stable stars are very
rare.



* You lost me at hello!

» https://www.youtube.com/watchv=AyrP-pwDayE

2. How do scientists know that recent
climate change is largely caused by
human activities?

Human activity leads to emissions of greenhouse
gases (causing warming), and of other pollutants that
produce small particles in the atmosphere (which
can have both cooling and warming effects). The
dominant influence of human activities on recent
climate change is clear from an understanding of
the basic physics of the greenhouse effect and
GGO ff HeWI H from comparing the detailed patterns of recent Tom I—Ian ratty
climate change with those expected from different

human and natural influences. Only when human

influences on the composition of the atmosphere

are incorporated can models reproduce observed

changes in climate.
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‘ Atmospheric Temperature Trends °C/decade
Canadian Climate Model 1979-2016
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Figure 1 Temperature trends (°C/decade) for 1979-2016 of the cross-section of the
atmosphere as simulated by the Canadian Climate Model. The tropical band (20°S-20°N)
is outlined for the bulk layer (surface to 50,000 ft) that represents the microwave Tyr
measurement (Temperature Mid-Troposphere). This outlined-layer is the region of
prominent warming for the 1979-2016 period as depicted in all models and thus is the
region to examine relative to observations (Figure by Rob Junod, UAH).

https://science.house.gov/sites/republicans.science.house.gov/files/documents/HHRG- | [ 5-SY-WState-|Christy-201/0329.pdf




Tropical Mid-Tropospheric Temperature Variations
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Figure 2: Five-year averaged values of annual mean (1979-2016) tropical bulk Tyr as
depicted by the average of 102 IPCC CMIPS5 climate models (red) in 32 institutional
groups (dotted lines). The 1979-2016 linear trend of all time series intersects at zero in
1979. Observations are displayed with symbols: Green circles - average of 4 balloon
datasets, blue squares - 3 satellite datasets and purple diamonds - 3 reanalyses. See text
for observational datasets utilized. The last observational point at 2015 is the average of
2013-2016 only, while all other points are centered, 5-year averages.

https://science.house.gov/sites/republicans.science.house.gov/files/documents/HHRG- | [ 5-SY-WState-|Christy-201/0329.pdf




Tropical Atmospheric Temperature (TMT) Trends for 1979-2016
Climate Models vs. Observations
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Figure 3. The linear trends of the average of the climate model simulations (red) and the
averages of the three types of observational datasets described in the text.

https://science.house.gov/sites/republicans.science.house.gov/files/documents/
HHRG- | [ 5-SY-Wtate-|Christy-201/0329.pdf




MODEL BASICS

* [he next few slides give some overview of the
oeneral circulation climate models



- Climate system
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Figure 5.1 The processes incorporated in an AGCM. It
computational effort is expended on the dynamics and th
processes incorporated in AGCMs

is generally true that more
e physics than on the other




‘Schematic of climate
system
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Figure 5.19 Box diagram illustrating the major componenis of a joint ocean-—
atmosphere model and the interaction among the components (reproduced by
permission from Manabe e al., 1979)




‘Basic Equations

ENERAL CIRCULATION CLIMATE MODELS

weather forecasts. Any AGCM must be formulated with some fundamental
considerations for:

1. conservation of momentum

D _
—Y-=—2£2xv—p 'Vp+g+F
Dt

2. conservation of mass

D
~—p—=—pV'v+C—E
Dt

3. conservation of energy

4. ideal gas law




Variables 1n
equations

where v = velocity relative to the rotating Earth,
t = time,

D d
— =total time derivative |=— + V-V
Dt ot

Q = angular velocity vector of the Earth,
p = atmospheric density,

g = apparent gravitational acceleration,
p = atmospheric pressure,

F = force per unit mass,

C = rate of creation of atmospheric constituents,

E = rate of destruction of atmospheric constituents,
I = internal energy per unit mass {=c¢,T],

O = heating rate per unit mass,

R = gas constant,

T = temperature,

c, = specific heat of air at constant volume.




“Conceptual” calculational
grid

(a) CARTESIAN GRID GCM

IN THE ATMOSPHERIC
COLUMN

Wind vectors
Humidity

Vertical exchange
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Temperature

A NS
/)i//?m\\\\\\\\\\'\\»s Clouds
Height
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Ground temperature,
water and energy
fluxes

Time step~30 minutes Grid spacing~3"x 3°




“Key” modeling result
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More simulations
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Fig. 2. Running decadal-mean global mean surface (1.5 m) temperature anomalies for (A) land, (B)
ocean (sea), (C) Northern Hemisphere (NH) land, (D) Northern Hemisphere ocean (sea). Data are
expressed as anomalies relative to the period 1961-1990 and masked as in Fig. 1. Solid black line,
observations; dashed line, ALL ensemble mean. The gray shading shows the 5 and 95 percentiles of
the expected uncertainty distribution of possible deviations from the model ensemble mean
calculated from a long control simulation of HadCM3.




Simulations of the past

Instrumental record Simulations

Mann and Jones with uncertainties CSM Crowley
---- GKSS Gerber et al. 1.5C0O2
— Bauer et al.(4c) —— Gerber et al. 2.5CO2
- --- Bauer et al.(19Be) Bertrand et al. ]

n

Temperature Change (°C)
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Year

FIGURE 10-4 Estimates of Northern Hemisphere surface temperature variations over the last
two millennia. Shown are 40-year smoothed series. Models have been aligned to have the same
mean over the common 1856-1980 period as the instrumental series (which is assigned zero
mean during the 1961-1990 reference period). The model simulations are based on varying
radiative forcing histories and employ a hierarchy of models. SOURCE: Jones and Mann
(2004b). Reproduced by permission of American Geophysical Union; copyright 2004.




Departure from 1979-83 Average (deg. C)
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Temperature anomaly (°C)

MODEL PREDICTICHINS

IPCC FAR vs. RSS+UAH global mean temperature change: 298 months January 1990 to October 2014
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* No change In tornados

U.S. Annual Count of EF-1+ Tornadoes, 1954 through 2014

o0

U.S. Annual Count of Strong to Violent Toernadoes (F3+), 1954 through 2014
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Solar activity has a direct impact on Earth's cloud cover

August 25, 2016 by Morten Garly Andersen
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Credit: Technical University of Denmark

Email

- Ateam of scientists from the National Space Institute at the Technical University of Denmark (DTU Space)
= and the Racah Institute of Physics at the Hebrew University of Jerusalem has linked large solar eruptions to

Print changes in Earth's cloud cover in a study based on over 25 years of satellite observations.
& [>X The solar eruptions are known to shield Earth's atmosphere from
PDF

Geophysical Research: Space Physics, shows that the global
cloud cover is simultaneously reduced, supporting the idea that

Holographic
Gratings (e e iperant o cous trmtin

Masters-RepIicated Optical cause a reduction in cloud fraction of about 2 percent
corresponding to roughly a billion tonnes of liquid water

Gratings H0|09 raphiC/RUIed disappearing from the atmosphere.
- Custom Gratings

horiba.com @

"Earth is under constant bombardment by particles from space
called galactic cosmic rays. Violent eruptions at the Sun's surface can blow these cosmic rays away from
Earth for about a week. Our study has shown that when the cosmic rays are reduced in this way there is a
corresponding reduction in Earth's cloud cover. Since clouds are an important factor in controlling the

Since clouds are known to affect global temperatures on longer
timescales, the present investigation represents an important step
in the understanding of clouds and climate variability.

study Jacob Svensmark of DTU.
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Barrett Bellamy Climate - MOD I RAN calculations

arrett Bellamy Climate
MODTRAN calculations

The MODTRAN programme is described on a previous page. Here are some
Welcome to our site calculations which put the suggested effect of doubling the atmospheric carbon
dioxide concentration into perspective
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No warming since 1979?!

CO2 last month

Calculated surface temperature/K
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The Greenhouse Effect 282
Harder greenhouse effect e
Greenhouse gases Sis
How large is the greenhouse? i :
0 100 200 300 400 500 600 700 800 900 1000
The vibrators CO, concentration/ppmv
The rotators This is a plot of some MODTRAN results for the temperature of the atmosphere in
which the CO; concentration varies from zero to 1000 ppmv. The intention is to show
Spectral transitions the logarithmic nature of the relationship between CO; and surface temperature, i.e.,
the temperature rises non-linearly with every successive addition of CO; causing
Greenhouse gas spectra smaller effects.
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Proxy-based reconstructions of hemispheric
and global surface temperature variations
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Fig. 3. Composite CPS and EIV NH land and land plus ocean temperature reconstructions and estimated 95% confidence intervals. Shown for comparison are
published NH reconstructions, centered to have the same mean as the overlapping segment of the CRU instrumental NH land surface temperature record
1850-2006 that, with the exception of the borehole-based reconstructions, have been scaled to have the same decadal variance as the CRU series during the

overlap interval (alternative scaling approaches for attempting to match the amplitude of signal in the reconstructed and instrumental series are examined in
Sl Text). All series have been smoothed with a 40-year low-pass filter as in ref 33. Confidence intervals have been reduced to account for smoothing.



FORTUNATELY..

« As far as | can tell, there is no impending climate calamity on the horizon
« Co2 levels have increased, but this does not directly mean that there will be
* more extreme weather events
» reduced crop yields, more insects, more disease spread...

« Even if we cut CO2 emissions, there is no evidence that China and other big growth countries
will

« Even if there was hardship coming, society has two choices, mitigate or adapt
 Adaptation would be possible and substantially cheaper

 Even if there is a chance of cataclysmic event, the normal course of action is a proportioned degree
of prevention
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LOOKING FOR CAUSE O
WARMING

temperature - emissions - CO2 trends
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