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■ The motivating question, “Why does NYC have so many more cases than anywhere 
else.

To pass the disease, it takes 2 people!  Thus the process is 2nd order.
 
Therefore  if  we want  some measure  of  possible  disease  passing interactions,  we need a  “concentration”  of
people with the disease and a concentration of people who are susceptible to the disease.  

Such concentrations seem to be (obviously) people/land-area. a.k.a “population density”

Since the interaction is second order, disease transmission rates will vary as the population density squared.

I don’t know why the disease modellers choose “first order” in the “number” of people.  When they do so,
there is an “R0” that not only varies in different locations -- for apparently unexplained reasons -- but also is
not constant in time!
 
 (How can any prediction be done in this case?
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◼ Hypothesis:  If the spread rate is 2nd order in population density, maybe so are the numbers of cases

Population densities of St. Joe. Marshall, Marion counties and NYC

Below,  the  disease  spread  is  modelled  as  a  2nd  order  “chemical”  reaction  with  A  +B  -->  2  B.   The
concentrations are people/land area

Cases and population density squared 

On March 31 for Marshall, St. Joseph, Marion counties in Indiana and New York city.  Data for population
density^2 in (people/mile^2)^2 and numbers of reported COVID19 cases.

2 covid_19_model.nb



data = {{ 1.1 × 10^4, 3},
{3.4 × 10^5, 49}, { 5.6 × 10^6, 964}, {7 × 10^8, 41000}}

{11000., 3}, {340000., 49}, 5.6 × 106, 964, {700000000, 41000}

Maybe just luck... but look at the correlation!

ListLogLogPlot[data,
AxesLabel → {" (population/mi^2)^2", "current cases COVID-19"}]
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equations for disease spread

1 person to 1 person, constant interaction rate, just a pair of equations for a 2nd order reaction, A + B--> 2 B

{ D[ca[t], t] ⩵ - β ca[t] × cb[t],
D[cb[t], t] ⩵ + β ca[t] × cb[t], ca[0] ⩵ ca0, cb[0] ⩵ cb0}

{ca′[t] ⩵ -β ca[t] × cb[t],
cb′[t] ⩵ β ca[t] × cb[t], ca[0] ⩵ ca0, cb[0] ⩵ cb0}

An  interaction  coefficient.   Could  be  different  in  different  locations,  but  not  likely  to  change  over  time
naturally -- unlike R0!
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β = .01

0.01

Some numbers for our St. Joseph county

ca0 = 585;

Supposed 100 initial infections some time in the past

cb0 = 100 / 400;

ans = NDSolve[
{ D[ca[t], t] ⩵ - β ca[t] × cb[t], D[cb[t], t] ⩵ + β ca[t] × cb[t],
ca[0] ⩵ ca0, cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]

ca[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t],

cb[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t]
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Plot[{ca[t] /. ans, cb[t] /. ans}, {t, 0, 3},
PlotLegends → {"unifected", "infected"},
AxesLabel → {" time", "populations"},
PlotLabel → {"100 initially infected"}]
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ca0 = 585;

only 10 initial cases

cb0 = 10 / 400;

ans = NDSolve[
{ D[ca[t], t] ⩵ - β ca[t] × cb[t], D[cb[t], t] ⩵ + β ca[t] × cb[t],
ca[0] ⩵ ca0, cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]

ca[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t],

cb[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t]

So it takes longer to get to the inflection point.  This is an arbitrary criterion, but allows comparison between
different initial conditions and population densities.
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Plot[{ca[t] /. ans, cb[t] /. ans}, {t, 0, 3},
PlotLegends → {"unifected", "infected"},
AxesLabel → {" time", "populations"},
PlotLabel → {"10 initially infected"}]
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ca0 = 585;

only 1 initial case

cb0 = 1 / 400;

ans = NDSolve[
{ D[ca[t], t] ⩵ - β ca[t] × cb[t], D[cb[t], t] ⩵ + β ca[t] × cb[t],
ca[0] ⩵ ca0, cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]

ca[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t],

cb[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t]

6 covid_19_model.nb



Plot[{ca[t] /. ans, cb[t] /. ans}, {t, 0, 3},
PlotLegends → {"unifected", "infected"},
AxesLabel → {" time", "populations"},
PlotLabel → {"1 initially infected"}]
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So if  initial  concentration is 1/400 time = 2.1,  if  the initial  concentration was 100/400 (that is  100 cases in
the country), the time would have been 1.3.  Even with this large uncertainty in initial cases, the time period
until maximum “growth” would vary by less than a factor of 2.

So the growth in  infected people  will  be  exponential.   So while  this  matches  the standard expectation of  a
epidemic model, exponential growth, the process is really a “pseudo” first order reaction.  

A value for the parameter β is not known, presumably it is determined by the mechanism of transmission, but
there  is  no  obvious  reason  for  it  to  change  in  time...  as  opposed  to  R0  which  has  to  drop  to  stop  the
exponential growth!

■ NYC

The concentration of people in New York City.

ca0 = 26400;

What if same initial concentration of cases in NYC as in St. Joseph country.  Using our middle value above,
10/400.
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cb0 = 10 / 400;

ans = NDSolve[
{ D[ca[t], t] ⩵ - β ca[t] × cb[t], D[cb[t], t] ⩵ + β ca[t] × cb[t],
ca[0] ⩵ ca0, cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]

ca[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t],

cb[t] → InterpolatingFunction
Domain: {{0., 10.}}
Output: scalar [t]

LogLinearPlot[{ca[t] /. ans, cb[t] /. ans},
{t, 0, 1}, PlotLegends → {"unifected", "infected"},
AxesLabel → {" time", "populations"},
PlotLabel → {"10 initially infected"}]
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We see that the time to inflection is ~0.052, compared to 1.75 for St. Joseph County Indiana.  This is about
1/30 the time interval for St. Joseph county.  

So it is not correct to say that one region is 2 weeks behind another!    
What ever is happening to NYC is 30 times faster than us... At least!

Something that was a couple of weeks there would never happen here! 
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■ Differences in local geography.

We might expect that the local fluctuations in population density are different depending on location.

Sure, maybe.  But I paste in a snapshot of an ideal gas simulation showing that the atoms “appear” to be in
many clusters even though there are no attractive forces.  Similarly, in a bar in NYC or in a small restaurant
in  Plymouth  Indiana,  there  are  relative  clusters  of  people.    Thus  most  of  the  transmission  in  either  city
would be in closely-packed, probably indoor, locations.    

Suppose that people get better

β = .01

0.01

Define  k  as  a  “rate”  coefficient  for  people  getting  over  the  virus  and  presumed  to  not  be  susceptible  to
immediate re-infection.

k = 1;

Some numbers for our county
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Some numbers for our county

ca0 = 585;

10 initial infections

cb0 = 10 / 400;

ansk2 = NDSolve[{ D[ca[t], t] ⩵ - β ca[t] × cb[t],
D[cb[t], t] ⩵ + β ca[t] × cb[t] - k cb[t], ca[0] ⩵ ca0,
cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]

anskp1 = NDSolve[{ D[ca[t], t] ⩵ - β ca[t] × cb[t],
D[cb[t], t] ⩵ + β ca[t] × cb[t] - k cb[t], ca[0] ⩵ ca0,
cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]

ansk1 = NDSolve[{ D[ca[t], t] ⩵ - β ca[t] × cb[t],
D[cb[t], t] ⩵ + β ca[t] × cb[t] - k cb[t], ca[0] ⩵ ca0,
cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]

ansk0 = NDSolve[{ D[ca[t], t] ⩵ - β ca[t] × cb[t],
D[cb[t], t] ⩵ + β ca[t] × cb[t] - k cb[t], ca[0] ⩵ ca0,
cb[0] ⩵ cb0}, {ca[t], cb[t]}, {t, 10}]
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Plot[{ca[t] /. ansk2, cb[t] /. ansk2, ca[t] /. ansk1 , cb[t] /. ansk1,
ca[t] /. anskp1, cb[t] /. anskp1, ca[t] /. ansk0, cb[t] /. ansk0},

{t, 0, 4}, PlotLegends → {"uninfected, k=2", "infected, k=2",
"uninfected, k=1", "infected, k=1", "uninfected, k=0.1",
"infected, k=1", "uninfected, k=0", "infected, k=0"},

AxesLabel → {" time", "populations"},
PlotLabel → {"10 initially infected, krecover = 0,0.1,1,2"}]
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We see that if some people recover, the cross-over point moves to later in time.  The total number infected at
any time is also reduced -- but this is obvious.

Conclusions

1.  The 2nd order model in population density gives a plausible reason for the very high numbers of infected
people in NYC compared to elsewhere.
2.  If this model is correct, regions that are much less densely populated have little worry about in terms of
overwhelming any medical facilities.  “Something” will happen to interfere with ever reaching a peak if the
time to get there is ~year, not 1 few weeks!
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