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1. Steady and startup flow between parallel plates
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Consider a Newtonian liquid with viscosity, ¢ and density p, flowing between parallel
plates of infinite extent. We will analyze steady and transient flows caused by the top
plate moving and the two pressures, P1 and P2 being unequal. Note that gravity does
not appear in this problem!

a. For steady flows, is the combined flow caused by a moving top wall and a pressure
imbalance the sum of the separately-derived solution for a moving top wall with
equal P’s and the fixed top wall and unequal P’s? Explain why or why not with
reference to appropriate mathematics.

b. Solve the steady, separate problems and find velocity profile for each case.

Find the average velocity for each separate case.

For equal average velocity, with the same plate spacing, find the ratio of the power

required to cause the steady flow.

e. Explain why which ever flow configuration is more efficient, is more efficient.

Now solve for the velocity profile as a function of time for the moving plate problem

(no pressure gradient!) with an initial state of zero velocity everywhere. Assume that

at t = 0, the top plate is suddenly set to a velocity of Up.

g. How “long” does it take to reach a steady state? Give a mathematical relation from
your results.

h. Find a relation for the cumulative work done to start up the flow all the way up to a
steady flow.
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2. Lubrication flow in a knee joint

The adjacent photo! shows a knee joint,
apparently under load, with a spacing between
the imaged bones of 4.5-6.3 mm. Presumably,
much of this space is filled with cartilage with the
remaining gap filled with synovial fluid.

The intent of this problem is to examine two of
the “model” flows that are associated with load
bearing joints, the “slider” and the “squeeze film”.
If we solve these two cases and enter some
numbers we can find out that no matter how we 5
m'th view the flow geometry and the Fig. 2 The frontal 30° fixed-flexion weight-bearing knee com-
mechanism of genera’[ion of the load bearing’ the pute.d radiograph; §hpwing the.ri':ference pgints for measuring
real gap will need to be ConSiderany less that 5 medial and lateral tibio-femoral joint space widths (arrows).
mm.

Slider Flow. We can use the figure from the text for this.
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a. Find the velocity profile within the gap for the combined pressure driven/moving
surface flow using the “nearly-parallel” assumption. Note that this means that locally
(at any x) you can assume that the profile is a fully-developed flow with a parallel
plate geometry. It also means that even if the outside pressure is uniform, there is a
pressure gradient within the gap in (only) the x direction.

b. If you realize that whatever “q”, the volumetric flow is, it does not change with x and
if you solve for the pressure gradient and then integrate the result for the length of
the gap, you will have a relationship between the pressure change (which could now
be set to 0), U, the geometry and “q”, the volumetric flow. Do this and find “q” in
terms of U, u and the geometric variables.

Now find the pressure as a function of x along the gap.
Calculate the total “load” that the slider could support.
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1 Anas et al. (2013) Egyptian Journal of Radiology and Nuclear Medicine 44 253-258.



e. Ifthe ho=0.6 cm, h. = 0.4 cm and L = 10 cm (with a width of 4 cm), for a fluid
viscosity of 2 Poise (i.e. g/cm-s), what is total load that could be supported? Is this
anything close to what your knee must be supporting.

Squeeze film

Consider the knee joint as modeled by a “squeeze” film. That is, when a load is placed
on this geometry, there is a transient where fluid is being squeezed from the gap. You
can assume that except for a short distance near x=0, that the flow is pressure driven
and fully-developed with a pseudo-steady state such that H = h(t). That is, the flow
instantaneously adjusts to the gap spacing.

f. Find an expression for the relationship between the load that can be supported and
the rate of change of the plate spacing.

g. From your solution or by other reasoning, explain why the greatest load can be
supported, for a given dh/dt, when the gap is smallest.



3. Analysis of a “biofilm”

While a bacterium could exist, at least for some amount of time, as a discrete, isolated
entity, if a solid surface is available bacteria will be found together in large numbers in
organized structures that can be termed “biofilms”. If you leave a glass of water out for
several hours you can grow your very own biofilm on the wall of the glass. When you
rinse it out, the substance on the wall that is more viscous than water is a mixture of
bacteria and various molecules secreted by the bacteria to make an structure that aids
their survival. In particular, a biofilm that forms on an intravenous needle or tube or on
an implanted medical device could enable bacteria growth and resistance to antibiotic
treatment.

As a first level analysis, let’s consider a biofilm that is at

steady state. To achieve this bacteria will need a source
of nutrients that is diffusing in from the adjacent water. If
we consider “S,”, as the concentration of the rate limiting

“substrate” in the film, the equation for steady state
concentration of S, will be?
2
_p J°S, ~ kXS,
7977 K, +S,

where we have assumed “Monod” or Michaelis-Menten or
Langmuir-Hinshelwood (depending on your lingo
preference) kinetics. In this equation Dyis the diffusivity, &
is simple rate constant for the consumption of S, K is
measure of the maximum amount of S that could be

available for consumption by the bacteria within the
“physiology” of the film.

0

a. If the substrate concentration in the liquid is So, which
is also the interfacial concentration of S(z=0) and the resulting concentration within
the film is such that Sy << K, find an expression for the S(z) within the film. The
thickness of the biofilm is Ly.

b. What dimensionless parameter controls the behavior of this solution.

c. Sketch some concentration profiles as this parameter is varied.

d. Now consider the same problem in the limit of Sy being a maximal value so that that
S'is in great excess. Find the profile Sq(z) for this case.

e. Suppose that the biofilm is actively consuming S and the water next to the film is
stagnant, for some depth L., draw a new “picture” of the mass transfer process,
write down the requisite transport equations and boundary equations. There is no
need to solve these.

2 Rittmann and McCarty (1980) Biotechnology and Bioengineering 22 pp2343-2357



4. Short answers.

a. Explain why “stir faster” might not be as good a “use a hammer” for enhancing the
rate of dissolution of a particulate solid in a solvent.

b. For a Newtonian fluid in a circular pipe, find an expression for F, the force
on the outside of the pipe necessary to keep the pipe in place.

c. For a Newtonian fluid in a circular pipe, find an expression for F, the force
on the outside of the pipe necessary to keep the pipe in place.
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DSolve[{D[c[v], {¥v, 2}] - ¢"2c[y] =0}, c[v], V]

, 1 5 ; B a1
oupes= {{cly] »e¥®C[1] +e¥?C[2]}}

in1s67= ExpToTrig[ans]

{{c[y] »C[3] Cosh[y¢] +C[4] Sinh[y ¢]}}



228  FUNDAMENTALS OF FLUID MECHANICS

Multiplying P by the identity tensor ensures that pressure is a normal stress (con
only to the diagonal elements of o) and is isotropic (gives diagonal elements that are
The minus sign is needed to make positive pressures compressive.

In a fluid undergoing any type of deformation, the total stress is writle

generally as
o=-P5+17

where 7 is the viscous stress tensor (or deviatoric stress). In a fluid at rest, this exce:
vanishes.! The viscous stress is related to the rate of deformation of the fluid, as a
in Sections 6.4 and 6.5. Because the off-diagonal components of o equal those ¢
symmetry of o implies that 7 is also symmetric.

The pressure in Egs. (6.3-7) and (6.3-8) is the same as in thermodynamics ¢
obey an equation of state of the form P = P(p,T), such as the ideal gas law. For
mal flow of single-component fluids, the unknowns in general are v, P, and p, and (
erning equations are the continuity equation, conservation of momentum (incl
constitutive equation for 7), and the equation of state. Incompressible fluids, the ma
in this book, are an idealization in which p is a specified constant. This reduces the
of unknowns by one, eliminates the equation of state, and makes P simply a mechani
able that adjusts to satisfy continuity and conservation of momentum. Unless it is 3)
at a boundary, the absolute value of P in an incompressible fluid is arbitrary. The r
ship between P and the mean normal stress in a flowing fluid is discussed in Sectic

CAUCHY MOMENTUM EQUATION

Using Eq. (6.3-8), the divergence of the total stress is
Vo=V (-P8)+V-r=-VP+ V-7,
Accordingly, Eq. (6.2-27) becomes
Dv

g - VP+ V-
th Pg L

which is called the Cauchy momentum equation. This general statement of conservatio
ear momentum provides the starting point for analyzing both Newtonian and non-Ne
flows, for either constant or variable p. Its components in rectangular (Cartesian), cyli
and spherical coordinates are given in Tables 6-1, 6-2, and 6-3, respectively.

TABLE 6-1

Cauchy Momentum Equation in Rectangular Coordinates

Xx component p{i‘i + vxi?& vva-vi + vzék} =pgy ?—I—) + [91{{ + fiv—‘ + BTU}
ot ax © oy 2z dx ax ay [iF4
dv, av, dv, dv, gP [0Txy 07y 9Ty

y component p[-a—r— + v,—a;+ v},—é; + vzgz—} =pgy — 5; + [ Py + oy + Py }
av, av, v, av, 5P [0 07y o1y,

z component p{—gt‘ + v,;—; + V},";;' + vz—a-;} =pg, -a—z‘ + { P —g;- Py jl

! Although 7 is called the viscous stress tensor (in keeping with the applications in this book). there ¢
elastic contributions to the nonequilibrium part of the total stress. For fluids that undergo structural 1
ments with noticeable relaxation times, “fluid at rest” carries with it the understanding that enough
elapsed to reach mechanical equilibrium.
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6.3 Total Stress, Pressure, and Viscous Stress 229

TABLE -2
Cauchy Momentum Equation in Cylindrical Coordinates
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STATIC AND DYNAMIC PRESSURES

For v =0, Eq. (6.3-10) reduces to the static pressure equation,

TP = pg. (6.3-11)
This encapsulates the well-known fact that the pressure in a static fluid increases with depth
(i.c., in the direction of g). It p is constant and the 7 axis points upward, then g = —ge,,
dP/d; = —pg, and

P(z) = P(0) - pg:. (6.3-12) il |

In terms of a position vector, the pressure in a constant-density tluid at rest is given by

|
Pry=P0y+pg-r (6.3-13) |
where P(0) is the pressure at the origin. The term pg - r is cquivalent to —pgh, where /1 is \ |
height above the origin. e ]
TABLE 6-3
Cauchy Momentum Eguation in Spherical Coordinates
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6.5 Constitutive Equations for Viscous Stress 237

e suppose that the molecular-level resistance to dilatation and shape-changing defor-
mations might differ, feading to different proportionality constunts for the kinds of motion
described by Eqs (6.4-15) and (6.4-16). This vields the result for a Newronian fluid.

i | N
T 2 - ;(V'v)h

il
'RKE;(V‘V)?):

5

R i ( Ko H )(V-vm (0.5-1)

Asshown in the first fine. the convention is to write the coetticients of the respective rate-
ofstrain tensors as 2 and 3k, where g is the shear viscosity discussed in Chapter 1 and
w s the dilatational viscosiny or bulk viscosity. Although the cocfticients depend on com-
positton and may also vary with T and P, the defining feature of a Newtonian tluid is that
o and « do not depend on the magnitudes of T or Ty,

The eltects of k on tluid dynamics are difficult 10 detect and are usually tgnored. It
has been shown theoretically that x = 0 for ideal monatomic gases, and it is generally
believed that for other fluids k <=2 . Contributing to the difficulty in measuring x is that
Vv = 0 when the density is constant. Constant f is a good approximation for liquids and
even formany gas flows, and in the absence of dilatation & cannot affect the viscous SUCsS.
For these reasons it is assumed hereafter that k = 0. An analysis involving a dilatational
viseosity is given in Batchelor (1970, pp. 253-55). in which a liquid containing gas bub-
bles 1s modeled as a homogeneous [uid.

Setting k = (0in Eq. (6.5-1). the constitutive equation for a Newtonian 1uid reduces (o
| « -
T=2u F*;(V-vm . (6.5-2)
: ]

Fhis is given in component form for the three common coordinate systems in Tables 64,
6-5.and 6-6. For an incompressibie Newtonian (Tuid (constant p) the viscous stress s

7= 2ul = Vv + (V) {0.5-3)
TABLE 6-4
Viscous Stress Components for Newtonian Fluids in Rectangular Coordinates
o L
TR TR Y ]
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TABLE 6-5
Viscous Stress Components for Newtonian Fluids in Cylindrical Coordinates

()
= = gl = -
= Te = b ar\r r HHJ

vg 1 av;}
Ty = Trp = a1
LE @K dz  r b |
. Gy, ]
T;r:TrZ:p* ar i 4z
1 (')VH a":

i a
Vev=—gv)+
rar(") r 48 9z

as stated in Chapter 1. For a unidirectional flow with v, = v,(y) and vy, = v, = 0, it may be

confirmed using Table 6-4 that Eq. (6.5-3) reduces to Eq. (1.2-14).
In Section 6.3 the total stress was related to the pressure and viscous stress by

o=—-P6+1 (6.5-4)

where P was equated with the thermodynamic pressure. An alternative, purely mechanical
definition of pressure is that it is (minus) the mean normal stress (Batchelor, 1 970, p. 141;
Panton, 1996, pp. 97-99). If this alternative pressure variable is denoted as P, then

(6.5-5)

P=- (Tex T Oyy + Uzz)~

W | —

TABLE 6-6
Viscous Stress Components for Newtonian Fluids in Spherical Coordinates
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6.5 Constitutive Equations for Viscous Stress 239
Using Bgs. (6.5-1) and (6.5-4) 1o evaluate o, for a Newtonian {luid gives
('H'\ 2 ‘ -
T R T A TH (Vv (6.5-6)

substitution of this and the analogous expressions for oy, and o-. in Eq. (6.5-5) resubts in
P=p—kiVey). (6.5-7)

Thus, Pand £ are wentical in any Newtonian fluid that is static. incompressible, or has
k=0,

NAVIER-STOKES EQUATION

The most widely encountered special case is a Newtonian fluid of constant density and vis-
cosity. Using Egs. (6.5-3) and (A4-11), it is found that
Ver=ulVA(Vv + (V)] = g Vv + (Vv = u V. (6.5-8)
Substituting this result into Eq. (6.3-9) feads to
Dv

——=pg— TP+ puV- 6.5-9)
P =8 pVy (6.5-9)

which is the Navier-Stokes equation.* Written in terms of the dynamic pressure, it is

Dv : A
;)*[;f‘ ==V +uVy (6.5-10)

Either form of the Navier-Stokes equation, together with the continuity equation reduced (0
Viv=0 (6.5-11)

provides the usual starting point for analyzing the flow of simple liquids or gases at mod-
erate velocities. As mentioned in Section 6.3, the unknowns for a pure, incompressible,
isothermal fluid are just v and P, Counting the three scalar components of v, there are a total
of four unknown functions. The continuity equation plus the three components of the
Navier=Stokes equation provide the requisite four partial differential equations. Equation
(6.5-9) is given in component form for the common coordinate svstems in Tables 6-7, 6-8,
and 6-9, and V- v may be found in Tables 6-4, 6-5, and 6-6. as well as in Table 2-2.

TABLE 6-7
Navier-Stokes Equation in Rectangular Coordinates

;[u'\ r'l\“ i v "]“\'
£ component P T gy, kg

L Oy ay T dg

siv, av, vy ap
veomponent P e Ty

(Y

> component Pl

N

This cyuation was reported independently by the French physicist L. Navier (1785-1836) in 1822 and the
Anglo-Trish physicist G G. Stokes (1819-1903) in 1845, A discussion of Navier's contributions is in Dugas
LB, pp. 4094 14): additional information on Stokes is given in Chapter 8.
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240  FUNDAMENTALS OF FLUID MECKANICS

TABLE 6-8
Navier-Stokes Equation in Cylindrical Coordinates

[av, Av,  vgdv, Vi av,
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NON-NEWTONIAN FLUIDS |

Any fluid that does not obey Eq. (6.5-1) is non-Newtonian. In general, such fluids have an
internal structure that is influenced by the flow and that in turn influences the relationship
between the viscous stress and the rate of strain. Examples include polymer melts, concen-
trated polymer solutions, and suspensions of nonspherical and/or strongly interacting par-
ticles. Among the distinguishing characteristics of various non-Newtonian fluids are a
dependence of the apparent viscosity on the rate of strain, unusually large values of the nor-
mal components of the viscous stresses, and “memory” effects in the relationship between
the stress and the rate of strain. A dependence of viscosity on rate of strain may reflect the

TABLE 6-§
Navier-Stokes Equation in Spherical Coordinates
N . e 1]
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8.5 Constitutive Equations for Viscous Stress 241

ability of the flow 1o orient particles or macromolecules, to break up particle aggregales,
and/or 10 influence the conformation of polymer molecules. The resistance of long-chuin
pulymers to orentation or elongation gives polymeric fluids an elastic charucter, which is
mantlested as an additional wension along streamlines (e, an elevated normal stress in the
{Tow directiony. The finite tme required for such molecules to reach an cquihibrium con-

: freuration s the source of memory effects. Fluids that exhibit elastic characterisuies and
have finite relaxation times are viscoelastic,

The dependence of the viscosity on the rate of strain is the MAjor concern in many
processes and can be modeled using straightforward modifications ot the constitutive equa-
tion for a Newtonian fluid. The resulting equations describe generuli-ed Newtonian fluidy,
whichare discussed next. The analysis of viscoelastic phenomena, including normal stress and
memory effects. is beyond the scope of this book. For discussions of that and other aspects of
pulviner rheology sce Bird et al. (1987, Pearson (1985), or Tanner ( 1985). Bird et al. (1987
s the source for most of the information presented below on generalized Newtonian fluids.

GENERALIZED NEWTONIAN FLUIDS

In this discussion of generalized Newtonian fluids it is assumed that p is constant. A num-
i ber of empirical expressions have been used 1o describe variations in the apparent viscos-
[ ity with the rate of strain. Using Eq. (A.3-34) and recalling that I is symmetric, a scalar
measure of the rate of strain is

i)

z

! o[ e .
i 1= E(I:I) . (6.3-12)
i

Ina generalized Newtonian fTuid the viscous stress is described still by Eq. (6.5-3), but now
with g = p(I"). Expressions for 1™ in the three common coordinate systems (valid even if
p is not constant) are given in Table 6-10). For atlow in which v, = ve(y)yandy, =v_ =,
r=\r,|= (/Dldv /d.|. The shear rate equals 277 or [dv /dv] in this example. Thus,

: each entry in Table 6-10 is the square of the shear rate. i
TABLE 6-10
Magnitude of Rate of Strain
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TABLE 8-12
Stream Function Equations
Velocity Form of Navier-Stokes
Geometry components equation® Differential operators
) o 5 Ay, Vi) I L
Cartesian (x,y) vy = (V) e = T Vo= e p —
Y by T Gy TV Y ax? gy’
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“The Jacobian determinants are given by

3(f-8):§af/ﬁ.x af/ay
ax.y) idg/ox 63/6)7"

Eq. (A.7-13) and identities in Table A-1] gives

V-v=V-<V¢x2>=f§~(v><w)—vlp-<w33>:o (6.8-4)
h3/ b h3
which confirms that the continuity equation is satisfied.

The stream function can be applied to planar or axisymmetric problems. In terms of
the three usual coordinate systems, planar flows, involving (x,y) or cylindrical (r, §) coor-
dinates, are ones that are independent of z and for which v, = 0. Axisymmerric flows, involv-
ing cylindrical (r, z) or spherical (r,8) coordinates, are independent of rotations about the 2
axis and have vy = 0 or vy = 0, respectively. The relationships between ¢ and the velocity
components for these four geometries are given in Table 6-12. For the axisymmetric cylin-
drical case the coordinates are arranged here as (z,r,8), so that e3 = eg and hy = hy=r.

Rewriting the Navier-Stokes equation in terms of the stream function is facilitated
by the relationships that exist between ¢ and the vorticity vector. Using entry (6) of Table
A-1 to evaluate the curl of Eq. (6.8-3) give55

w=VX (w; x 31) = Vi v<3> + w;(v- 3) By (689
hy hy hy/  hs

5 There is also an (e3/lt3) - YV term, but it vanishes because neither the planar nor the axisymmetric form of ¥
has an ey component.
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Using this in g (10.6-15) gives

. /)/ T/ ap\ DP
pCo v o - ( ! ) O BAx? (0.6 1%)

[)f il P 1Bl
This form of the encrgy equation s valid for any single-component fluid with o symmet
Fe stress tensor, In comparison with Eq. (2411 owithout Hye there are two additional
rerms on the right-hand side. The one involving the density and pressure is related o the
work required to compress the fuid and will be relerred to as the compressibifiny term, The
one ivolving the viscous stress represents the comversion of hinctic energy o heat. caused
by friction within the fluid, This irreversible process is called viscous dissipation.

For a Newtonian fluid. the vate of viscous dissipation is proportional to the viscosity
and is evatuated as

5

ml TARRIN i‘;ur/), (10.6- 195

7:Vv =

The viscons dissipation function, &, is related to the shear rate and the divergence of the
velocity, as shown. When 27718 caleulated as in Table 6-10 and Vv s evaluated as m
Tables 6-4 through 6-6. 1t is found that & = 0. The fact Ihdl @ cannot be negative 1s most
evident for an incompressible fluid. for which @ = (2177, Accordingly. viscous dissipa-
ton always acts as a heat souree, veflecting the frreversibitity of frictional Tosses For
Newtonian [uids. including those with vartable density. By, (10.6-18) becomes

S 7 {aopy DP
(e = =Y g (’) T (106 201
ey Al Sy e
The compressibility term has asimple form for ideal gases. w here (ip iy = op L

Thus, the enerey equation for an ideal gas s

- DT I)/’
,’ T Y'(' T crem 43 H(/')~ (H) (\?]‘
2% D

Por a Newtonian (iid that is incompressible in the sense that (ap i/ Oothe vieis
cquation simplifies turther to

Y L
pC= Vg e ud, (10,6920

e
Fhe principal Torms of the energy cquation derved here are sumni m/ui i Table ol
Aany other forms of consenation of energy are ghen in Bird ctal Cppe 30 NU‘
10

The different uses of “incompressible™ may be confusing. c\pvu;l!l\ 1 connect
with gases, From the viewpoint of the continuity and mnmunum cyualions, gases ofd
by ¢ as il their density s constant. As discussed in Section 230 this is eencrally true for
selocitios much staller than the speed ot sound. '\Junclhcla-\x the equation of state

i shows that (i o7 op 2 00 Whethey T e 0.6 21 can be approsaima fed by byl 2
k‘kp& nds on the relative magnitudes vt the prossure Jlld femperature varitons. I s sense
there i~ a distinction hu\\un Hurd-dy nanie and dhermody namie inconpressibility.
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e 101
Conservation of Energy for a Pure Fluid in Terms of Temperature and Pressure
DI foopn DP
conenal pl Vg / : ~1 Uy (A}
1) IR A b
: - fyry hP
N e o Vg ( : c ol B
13 pounl dp
bl nr
Hova L o Vg - o b ()
, Y
fooemprosstble Newtonian i m Voy - oud (h
1

sttty A0 et i Ty B 0o

eye, UmeonyrosableT means that vy o 08

Viscous dissipation introduces a new dimensionfess parameter. For steady flow of a

New tonian, incompressible fluid, Eq. (10.2-1) becomes

Pev -V =8 6+ Ry (10.6-23)
- (LY
. E7> o (10.6-24)
(,73
Br = _'(.',AL_,:? (10.6-25)
kAT

where A7 is the temperature scale used in defining ©. The Brinkman number. Br. expresses
the relative importance of viscous dissipation and heat conduction. (A refated dimension-
less group is the Eckert munber, Ec = Br/Pry Reasoning as in Section 10,3, it iy inferred
that

Nu = Nu(F,.. Re. Pr, Br, geometric ratios) (10.6-26)

for steady flow. The results in Sections 104 and 10.5 all correspond o Br— 0. in which
case viscous dissipation is negligible, Viscous dissipation tends to be important mainly for
polvmeric lguids (large ) or high-speed flows (farge &)

10.7 TAYLOR DISPERSION

Stuppose that a soluble substance is injected rapidly into aliquid flowing i a tube. momen-
trthy creating a sharp peak in solute concentration. As the peak moves downstream it will
hroaden, and detectors placed at various positions to measure the cross-sectional average
conceniration in the passing Muid might record a series of Gaussian profiles like those in
Fie. 4.2, The dispersion of solute that broadens the peaks resembles molecular diffusion,
hut it oceurs even if (he Péclet number is large enough 1o make axial diffusion negligible.
Adding to the seenmiing paradox. increasing the molecular diffusivity may slow the peak

broadening, rather than speed it. At high Pe. the dispersion actually stems not from
asial diffusion, but from the combined effects of radial diffusion and a nonuniform axial
velocity, This phenomenon. analy zed by G. L Tuylor in the carly 19505, 1s called Tuvlor
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TABLE 112

Forms of the Averuge Nusselt Number for Laminar Flow with Pe - -1

st Other phase Re P’y Nu
Flutd vr solid % | A Bibee Re
Frusd amy Ny ¢ Re
Sotul S R v CRe P
Solsd % | ! CRe P

- Sohd > | ! CRe br Y

Pepomananvter o seb resiboed mdieduadfy batast be sachthar Pe Re Dy

will scale as 7. which in the thermal boundary Tayer v O Re “Pr 'y {\cc g o3

fquatting these exponents with those inEqg it leadswoa = b= l'hi\‘ scaling wis
ween in the analysis of heat transter in ereeping flow pasta solid \Phklk for Pe o Libixam-
ple 112-2).

FLUID-SOLID INTERFACE FOR LARGE Re AND LARGE Pr

Again. the irst nonzero erm m the expansion for the velocity is that proportional 1o V.
What differs from the previous case is thato with a momentum boundary layer. the veloe-
iy eradient at the surface is large. Specifically. faminar boundary -layer theory predicts that
W07 = OfRe! %) (Chapter 9). IUfollows that the velocity in the thermal boundary Tayer
WOmRe 2 P Myand that ¢ = 12 and A = 173 This scaling was derived in Section 113
beee By e 113223

FLUID-SOLID INTERFACE FOR LARGE Re AND SMALL Pr

In boundary-layer flow at small Prthe thermal boundary laver resides mainly i the momen-
fum outer region, as discussed i Scetion H 3. Thus, it is known directly that 7 = O(1) in
the thermal boundary fayer and Eq. (11.4-8) is not needed. Coincidentally. th sealing s
the same as Tor a Muid-luid interface, or a = b= 172 This result has been aiven already
as b (HE3-16),

SUMMARY OF SCALING LAWS

The usuh\ tm the average Nusselt number in the situations just discussed are summarized
mn lL\hIL 2 The analogous predictions for the average Sherwood number are in Table
-3 (‘\sL l in cach table. which is for any situation with targe Re. follows joindy from

TABLE 11-3

Forms of the Average Sherwood Number for Laminar Flow with Pe =~ |

Clse Other phase Re Se Sh

! Fluid or sohd > 1 Any! BiSe) Re' -
E; Fhad Ayt Any! CRel TS

: Solid obor el | CRe'Se
A Soltd | = CRe' S

P urmeter i oot resircted ndnduaite butmustbe sochihat Peo Re S0
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Table 3.3 Mass transfer for simple situations

Fluid motion

L. Inside circu-
lar pipes

2. Unconfined
flow paralle!
to flat platest

Confined gas
flow parallel
to a flat plate
in a duct

4. Liquid film in

wetted-wall
tower, transfer
between liquid
and gas

Range of conditions Equation Ref.
Re = 4000-60 000 Jp = 0.023 Re-017 41,
Sc = 0.6-3000 Sh = 0.023 Re0#3 g¢1/3 52
Re = 10 000 - 400 0op Jp = 0.0149 Re 012
Sc > 100 Sh = 0.0149 Re%88 gc1/3 44
Transfer begins at
leading edge Jp = 0.664 Re 03 32
Re, < 50 000
Re, = 5 x 10°-3 x 107 05 ooaf Pro )02
Nu = 0.037 Re0% poa3f To

Pr = 0.7-380 ¢ B A Pr, v

65

Re, =2 x 10*-5 x 10 Between above and
Pr = 0.7-380 Nu = 0.0027 Re, v&‘aﬁ =2

Re, = 2600-22 000 Jp = 0.11 Re02 46
al = 0-1200,

[ Egs. (3.1 8)-(3.22)

ripples suppressed 20,
4r 37

ﬁ;_.z&
rtlﬂ Goclmug Sh = (1.76 x 109 'tfv 8c03



5. Perpendicular  Re = 400-25 000 kP,

JRCLAU RS TR 04
to single Sc = 0.6-2.6 Gy >¢ " = 0281 Re 3
cylinders Re' = 0.1-10° 16,
Pr = 0.7-1500 Nu = (0.35 + 0.34 Re®S + 0,15 Re'0%#) pro3 21,
42
6. Past single Sc = 0.6-3200 Sh = Shy + 0.347(Re” Sc0%)ve2
spheres Re” S5 = 1.8-600 000 shy = | 20+ 056%(Gry S¢)° ™ GrpSe < 104]
20 + 0.0254(Gr, S¢)** 8c22% Gy Sc - 10%
7. Through fixed Re” = 90-4000 2.06
beds of pellets§ Sc = 0.6 Jp=Jy = ’.mlz&: (s
Wﬂ rm mooo,_o 300 Jp = 095, = BM_ Re” - 0815 a,
: 23,
Re” = 0.0016-55 N U PN
Sc = 168-70 600 Jo=="Re o
Re” = 5-1500 C 2025 L o
Sc = 168-70 600 CEa

t Average mass-transfer coefficients throughout, for constant solute concentrations at the phase surface. Gener-
ally, fluid properties are evaluated at the average conditions between the phase surface and the bulk fluid. The heat-
mass-transfer analogy is valid throughout.

} Mass-transfer data for this case scatter badly but are reasonably well represented by setting j,, = j,,.

§ For fixed beds, the relation between ¢ and disa =61 — &\&m. where a is the specific solid surface, surface per
volume of bed. For mixed sizes {58}

W :.‘&M.

=]
b=

M n; h.hu.

F}

i e U ———————
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TABLE A-2
Differential Operations in Rectangular (Cartesian) Coordinates”

(1) Vi=—e,+—
X

ax | av oz
dv, O, av.  av vy gy
(3) VXv=[-’—z*—l}exwh[-i—-—i]eﬁr[-—i——fx}e,
ay 8z dz  dx ox 9y
Ff o o
“4) V= —é + ~—j; e
ax* 3 dz

5 (o=
(5) ( V)x,t—ax

(6) (VW) = E\:

0] (V). = .
v,

8) (Vv)y,t = g
av.

gt ¥y
% (Vw)y, = Y

(10) (V) = 6—;

(n (Vv = e
az
vy,

12) (W=
ov.

(13) (Vv),. = g

W4 z
%
r A
i
i
:
AN r : //’ 7
9 N ¢ ///
__________ Mg
X
(a)

Figure A-3.  Cylindrical coordinates (a) and spherical coordinates (b). The ranges of the angles are cylindrical,
0 =8 =2, and spherical, 0 <6 < 7 and 0 < b < 27r.
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