$$
\begin{aligned}
& \text { CHE } 34487 \\
& 6 / 25 / 20
\end{aligned}
$$

MULTI STAGE OPERATIONS
CONSIDER A LIQUIOMIXTURE

Thermodynamic Equilibrium Diagrams

Figure 3.3. The $x-y$ diagram for n-hexane- n-octane, at 101 kPa . (E. J. Henley and E. M. Rosen, Material and Energy Balance Computations, John Wiley \& Sons, New York, (C) 1969.)

$$
\text { SUPPOSE } X=, 3
$$

$$
\begin{aligned}
& y=.7 \\
& \text { IT IS DESIRED } \\
& \text { TO GET HEXANE } \\
& \text { AT ~0.99 } \\
& \text { POUTY? } \\
& \text { WHAT CAN YOU }
\end{aligned}
$$

DO.?

Thermodynamic Equilibrium Diagrams

Figure 3.3. The $x-y$ diagram for n-hexane- n-octane, at 101 kPa . (E. Computations. M. Rosen, Material and Energy Balance Computations, John Wiley \& Sons, New York, (C) 1969.)

We could collect
SOME OF THE
vapor and
CONDENSE.
OF COURSE, IF
WE PICKED A
SIGNIFICANT
FRACTION,
the concentration
WOULD DROP..

NOW WE HAVE VAPOR AT $y=.93$

NOW CONDENSE THIS AND $X=.93$
IF WE VAPORIZE AGAIN, WE WOULD WE CLOSE TO. 99

OF COVLSE WE WORLD HAVE
ONLY A SMALL AMOUNT OF PRODUCT.

WE SEE THE PrincIple!!

HOW ABDUT EXTRACTION.

THE BACTERIA
HAUE PRODVCED
DESIRED
compdund
IT IS ATLEAST
Alittle
HYDNOPHOBIC

EQUILIDMINM PARTITIONINF

$$
Y X \quad X=\frac{M A S S O F P C}{M A S S H_{2} O}
$$

SUPPOSE WE ADD
500 ML OF DEE TO jor RR

$$
\begin{aligned}
& x=0.4 \\
& Y=1.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { WE COULD ADD } \\
& \text { MORE }
\end{aligned}
$$

OR MORE

THIS ACCOPLISHED
THE GOAL OF

REMOVING
VALUABLE DRUG FROM BOTH BUT IT IS INCREASINGLY DILUTE!!

$$
\begin{gathered}
\text { CONS DOER EXTRACTION } \\
Y_{Y}=m X
\end{gathered}
$$

FEED STREAM, FS=J MASS

SOLVENT STREAM $S E=3 \frac{\text { MASS }}{\text { TIME }}$

$$
\begin{aligned}
& y_{S} S+X_{A F} F=F X_{A}+S y_{A} \\
& \text { AMOUNT } \\
& \text { REMAINING } \\
& \begin{array}{ll}
\text { INT) } \\
\begin{array}{l}
F E E D \\
\text { STREAM }
\end{array} & \frac{X_{A F} F}{}=F X_{A}+\operatorname{sm} X_{A} \\
X_{A F} & =\frac{1}{1 T \frac{M S}{F}}
\end{array} .
\end{aligned}
$$

$$
y_{A}=m x_{A}
$$

$$
\frac{X_{A}}{X_{A F}}=\frac{1}{1 T \frac{M S}{F}}
$$

$$
\text { PICK, } \Lambda \equiv \frac{m S}{F}, \quad \xi \equiv \frac{X_{A F}}{X_{A}}
$$

$$
\text { "BIGGER" IS } \angle E T T E R
$$

$$
\xi=1+\lambda
$$

, \rightarrow \{" $\Lambda^{\prime \prime}$, "separation factor"\}] separation factor

Out [56]=

M MAY BE FIXED BY CHEMISTRY OTHER WISE MUST INCREASE S!!
SUPPOSE

(1) $F X_{A F}=F x_{A_{1}}+\frac{s}{2} y_{A_{1}} \quad y=m x$
(2) $F X A_{1}=F X A_{A_{2}}+\frac{5}{2} y_{A_{2}}$

$$
\xi_{2}=\left(1+\frac{\pi}{2}\right)^{2}
$$

TWO STAGES IS BETTER
$P \operatorname{lot}\left[\left\{1+\Lambda,(1+\Lambda / 2)^{\wedge} 2\right\},\{\Lambda, .1,10\}\right.$, AxesLabel $\rightarrow\{" \Lambda "$, "separation factor"\}, PlotLegends \rightarrow \{"1 stage", "2 stages"\}]

$$
\begin{aligned}
& F X_{A_{F}}=F X_{A_{1}}+y_{A_{1}} \frac{s}{3} \\
& F X_{A_{1}}=F X_{A_{2}}+y_{A_{2}} s / 3 \\
& F X_{A_{2}}=F X_{A_{3}}+y_{A_{S}} s / 3 \\
& \xi_{3}=\frac{X_{A_{F}}}{X_{A_{3}}}=\left(1+\frac{\Lambda}{3}\right)^{3}
\end{aligned}
$$

WE CAN NOW GUESS..

$$
\begin{aligned}
& \xi_{n}=\left(1+\frac{\Delta}{n}\right)^{n} \\
& \text { As } n \rightarrow 00 \ldots
\end{aligned}
$$

$$
\hat{S}_{\infty}=\operatorname{ExP}(\pi)
$$

WHICH SEEMS REAL2Y GODD!!

$$
\begin{gathered}
\text { HOWEVED... WECAN DO } \\
\text { EVEN BETTER ! ! }
\end{gathered}
$$

$$
(C A N A N E X P O N E T A C B E B E A T ?)
$$

COUNTER CORRENT

(1) $F x_{A_{F}}+S y_{A_{1}}=F x_{A_{1}, t}+S, y_{A_{1}}$
(2) $\quad=x_{A_{1}}+S y_{A_{S}}=f X_{A_{2}}+S y_{A_{2}}$

$$
\begin{aligned}
& x_{A_{2}}=\frac{X_{A F}}{1+n+n^{2}} \\
& \left\{_{2}=1+A+n^{2}\right.
\end{aligned}
$$

LETS CHECK3....

$$
\frac{x_{A_{3}}}{x_{A F}}=\frac{1}{1+\Lambda+\Lambda^{2}+n^{3}}
$$

Sowe have

$$
\xi_{n}=\sum_{i=0}^{m} \Lambda^{i}
$$

WE COMPARE CROSS CURRENT TO countercurrent...

Separation factor: countercurrent/crosscurrent

$$
\text { CROSSCURRENT } \quad \zeta_{\infty}=\exp (\Omega)
$$

$$
\begin{array}{ll}
\text { IF IS LIMITED, } & \text { S IS LIMItED } \\
\text { COUNTERCURRENT } \\
\sum_{\omega}=\sum_{i=0}^{\infty} A^{i} & \text { IF A>1 } \\
& \sum_{i} \text { IS UNLIMITED. }
\end{array}
$$

SO ALMOST AL WAYS. counter current.

KEy dimen sidnless padameeter:

$$
\begin{aligned}
& \Lambda \equiv \frac{m S}{F} \\
& \xi_{n}=\sum_{i=0}^{n} \Lambda^{n} \\
& \xi_{n}=\frac{n^{n+1}-1}{n-1} \\
& n=\frac{\ln \left(1+(n-1) \xi_{n}\right)}{\ln (n)}-1 \\
& \text { KREMSER EQ }
\end{aligned}
$$

EXTRACTION COLUMN
frisco (Tightnin CMContactor) (Oldshue-Rush-
ton) Column.
RGIERENCES: Oldshue and Rushton, Chem. Eng. Progress, 48, 297 (1952). Dykstra, Thompson, and Clouse, Ind. Eng. Chem. ${ }^{\text {bo, }} 161$ (1958). Gustison, Treybal, and Gaps, Chem. Bio. Progress, Sump. Ser., in press.
Refer to Fig. 21-47. The extractor is an extension of the simple baffled mixing vessel into a multistage column.

FIg. 21-47. Mixco (Oldshue-Rushton) extractor.
Although commercial application has been made, data are scarce and limited to towers of small diameter. The

> Fig. 21-4
> $\underset{\substack{\text { ketone-ac } \\ \bar{x}=\text { loo }}}{\overline{c_{i}}} \quad$ PROBABLy
[Data of C
A som
Eguchi, 20, 2 (1 (1957); is chara between centric column, ($V_{C}=$: fraction

Refer 1958; Br 771 (194
Eng. Chi

$$
\begin{aligned}
& \text { IN EQ. } \\
& \text { PLUS NEVER } \\
& \text { ALLOWED } \\
& \text { TO } \\
& \text { SEPARATE } \\
& \text { INTO } \\
& \text { PHASES }
\end{aligned}
$$

FIG. 21-51. Second Scheibel extractor. (Courtesy of York Process Equipment Corp.)
compartment height to tower diameter has been reduced. Data taken from a 12 -in .-diameter column are shown in Fig. 21-52, correlated in terms of the power applied per

IDEALLY
AN

$$
\begin{aligned}
& \text { EXTRACTOR } \\
& \text { LOOKS } \\
& \text { MORE LIKE } \\
& \text { THIS... }
\end{aligned}
$$

For distallation

INHERENT TRADE OFF BETWEEN \# Trays Y rete of heating
cAPITAL
coss
oberat ing COSTS

FLOWS WITHIN
A column

the mechanical design used and the conditions of operation. The lower, on the other hand, depends upon the quantities of liquid

Thermodynamic Equilibrium Diagrams

Figure 3.3. The $x-y$ diagram for n-hexane- n-octane, at 101 kPa . (E. J. Henley and E. M. Rosen, Material and Energy Balance Computations, John Wiley \& Sons, New York, (C) 1969.)

COMPONENT MASS BALANCE GIVES "OPERATTNG"LINE

FROM THE y - x DIAGRAM AND MASS BALANCES

Mc CABE-THIELE

$$
\begin{aligned}
& \text { METHOD } \\
& \text { WETOOKA } \\
& \text { FEADOF } \\
& X_{H}=.6
\end{aligned}
$$

AND SEPARATED
IT INTO

$$
x_{H}=.95
$$

$\forall x_{H}=1$
USING 8

$$
E Q U_{1} L B \cap I U M
$$

STAGES

AS it TURNS OUT, YOU don't actually haveto USE EQUILIBRIUM STAGES.

Structured

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6.28 Some random tower packings: (a) Raschig rings, (b) Lessing ring, (c) partition ring, (d) Burl saddle (courtesy of Maurice A. Knight), (e) Intalox saddle (Chemical Processing Prounts Division, Norton Co.), f Tellerette (Ceilcote Company, Inc.), and (g) pall ring (Chemical Procesig Pro l Division, Norton Co.).

$$
\begin{aligned}
& A \text { IS KEY DIMENSIONLESS } \\
& \text { PARAMETER } A \equiv \frac{L}{m G}
\end{aligned}
$$

VNIT OPERATIONS
GAS ABSORBER
THE GAS ABSORBER IN THE IMPERIAL COLLEGE PILOT USES AN MFA IN WATER LIQUID TO ABSORB CO 2 FROM A MIXTURE IN N_{2}

ABSORBER AND STRIPPER

Structured

Both give:
Random

- high surface area between liquid and gas ($350 \mathrm{~m}^{2} / \mathrm{m}^{3}$)
- continuous mixing of liquid and gas and they flow through column - high fraction of "void" space so that the pressure drop is low

