Effect of pressure on distillation

M. J. McCready, 4/21/21

Fenske equation

For a simple situation, the Fenske equation gives the minimum number of trays (even Wikipedia has
this...) as a function of the relative volatility. The distillate mole fraction is xd and the bottoms mole
fraction is xb.

n49p= fenske = Log[ (xd/ (1-xd) (1-xb) /xb)] /Logl[a]

(1-xb) xd]

Log[ xb (1-xd)

Out[49]=
Log[a]
ns1= Plot[fenske /. {xd » .99, xb » .01}, {a, 1.1, 4},
AxesLabel » {" a -- relative volatility", "minimum trays"}]
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An example of a, toluene, hexane

TisinC.
1342.31
ngl= Psatl[T_] ¢= (1/760) »107 (6.95087 - —); (xtoluenex)
T+219.187
1189.64

Psat2[T_] :

(1/760) x10A (6.91@58 - ] 3 (*n hexanex)

T+226.28
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Raoult’s law

For Raoult’s law, the relative volatility is just the ratio of vapor pressures. Note that the total pressure
divides out, but as P increases, T must increase and stay above the bubble point.

ns2= Plot[Psat2[T] / Psatl[T], {T, 25, 250}, AxesLabel -» {"T - Celsius", "a"}]
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We see that as T increases, the relative volatility decreases significantly. Does this occur all of the
time... some other day.

We will do a bubble point calculation below, but the Fenske equation tells us that the minimum num-
ber of trays will vary as

nssi= Plot[fenske /. {a » Psat2[T] /Psatl[T], xd » .99, xb - .01},
{T, 25, 250}, AxesLabel -» {"T-- Celsius", "minimum trays"}]

minimum trays
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Since the actual trays will be some factor, we see that the number of trays would be expected to double
over this temperature range.
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Bubble point, Raoult’s Law

We will pick a total pressure and find the bubble point T. Use a x=.5 feed.

nie= eql = ptotal == .5Psatl[T] + .5Psat2[T]

1342.31 5.95087- 1342.31 3.91058- 1189.64 5.91058- 1189.64

3.95087- 210.187:T + 0.0263158 ~ 2 226.28:7 .« 5 226.28.T

oufiel= ptotal = 0.0263158 - 2 219.187:7 « 5

nzop= PLlot[T /. FindRoot[eql, {T, 25}], {ptotal, 1, 10},
AxesLabel -» {"P (ATM)", "Bubble point T"}]
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Or check the boiling point of toluene

nes= bpl = ptotal == Psatl[T]

1342.31 5.95087- 1342.31

23‘95087_ 219.187-1 ~ 5§ 219.187+T

1
ouesl= ptotal = —
19
niee)= PLlot [T /. FindRoot[bpl, {T, 25}], {ptotal, 1, 10},
AxesLabel » {"P (ATM)", "Toulene Boiling point T"}]
Toulene Boiling point T
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Now back to distillation scaling

We know Raoult’s law is a poor approximations as P increases past a couple of ATM. However, save
fixing it for another day...

Temperature range to check...

nse= PLot[T /. FindRoot[bpl, {T, 25}], {ptotal, 1, 25},
AxesLabel » {"P (ATM)", "Toluene Boiling point T"}]

Toluene Boiling point T
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Minimum Trays... (Fenske eq.)

ns7= Plot[fenske /. {a » Psat2[T] /Psatl[T], xd » .99, xb - .01},
{T, 110, 280}, AxesLabel » {"T-- Celsius", "minimum trays"}]

minimum trays

out[57]= "r
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So the minimum trays would vary from ~8 to ~13 at the highest pressure.



In[58]:=

out[58]=
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Plot[ (fenske /. {a » Psat2[T] /Psatl[T], xd » .99, xb - .01}) /.
FindRoot[bpl, {T, 25}]1[[1]], {ptotal, 1, 25},
AxesLabel » {"P (ATM)", "minimum trays"}]

minimum trays

P (ATM)

Minimum reflux...

In[29]:=

Out[29]=

The minimum reflux directly reflects energy costs. How does this change?
The simplest relation for minimum reflux is the “Underwood Equation”. A reference for this is King’s

book: “Separation Processes”, McGraw Hill, 1971, but there is probably a 2nd edition and the Under-
wood equation is probably in many texts...

(xo D/ (xg F) - a (1-xp) D/ ((1-x¢) F))

a-1

We pick a saturated liquid feed for simplicity, a 50 - 50 initial mixture and .99 xd and xb

LminslashF = (.99 - a .01) / (a-1)
0.99-0.01«a

-l+a

L is the liquid flow in the upper part of the column, LminslashF is L/F, where F is the (liquid) Feed.
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nzs= Plot[LminslashF /. a » Psat2[T] / Psatl[T], {T, 110, 280},
AxesLabel » {"Temperature, C", "L/F - top section"}]
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Perhaps the standard “R” reflux ratio, which is “L” from here divided by D, which is the distillate prod-
uct flow rate would be easier. F=2 D for this idealized case...

3= minRflux = (.99 - a .01) / (a-1) 2
2 (0.99-0.010)

out[31]=
-l+a
nize= Plot[minRflux /. a » Psat2[T] /Psatl[T], {T, 110, 280},
AxesLabel » {"Temperature, C", "minimum reflux ratio"}]
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niag;= Plot [ (minRflux /. a » Psat2[T] / Psatl[T]) /. FindRoot[bpl, {T, 25}]1[[1]],
{ptotal, 1, 25}, AxesLabel -» {"P (ATM)", "minimum reflux ratio"}]
minimum reflux ratio
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So the reflux ratio and hence the energy requirements will vary by about a factor of 2. For commodity
chemical processing, even a few % of energy savings is important!



