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Fenske equation
For a simple situation, the Fenske equation gives the minimum number of trays  (even Wikipedia has 
this...) as a function of the relative volatility.  The distillate mole fraction is xd and the bottoms mole 
fraction is xb.

In[49]:= fenske = Log[ ( xd / (1 - xd) (1 - xb) / xb)] / Log[α]

Out[49]=

Log (1-xb) xd
xb (1-xd)



Log[α]

In[51]:= Plot[fenske /. {xd → .99, xb → .01}, {α, 1.1, 4},
AxesLabel → {" α -- relative volatility", "minimum trays"}]

Out[51]=
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An example of α, toluene, hexane
T is in C.

In[8]:= Psat1[T_] := (1 / 760) * 10^ 6.95087 -
1342.31

T + 219.187
; (*toluene*)

Psat2[T_] := (1 / 760) * 10^ 6.91058 -
1189.64

T + 226.28
; (*n hexane*)



 Raoult’s law

For Raoult’s law, the relative volatility is just the ratio of vapor pressures.   Note that the total pressure 
divides out, but as P increases, T must increase and stay above the bubble point.  

In[52]:= Plot[Psat2[T] / Psat1[T], {T, 25, 250}, AxesLabel → {"T - Celsius", "α"}]

Out[52]=
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We see that as T increases, the relative volatility decreases significantly.   Does this occur all of the 
time... some other day.

We will do a bubble point calculation below, but the Fenske equation tells us that the minimum num-
ber of trays will vary as

In[55]:= Plot[fenske /. {α → Psat2[T] / Psat1[T], xd → .99, xb → .01},
{T, 25, 250}, AxesLabel → {"T-- Celsius", "minimum trays"}]

Out[55]=
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Since the actual trays will be some factor, we see that the number of trays would be expected to double 
over this temperature range.

Bubble point, Raoult’s Law
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Bubble point, Raoult’s Law
We will pick a total pressure and find the bubble point T.  Use a x=.5 feed.

In[16]:= eq1 = ptotal ⩵ .5 Psat1[T] + .5 Psat2[T]

Out[16]= ptotal ⩵ 0.0263158 × 23.95087-
1342.31

219.187+T × 55.95087-
1342.31

219.187+T + 0.0263158 × 23.91058-
1189.64
226.28+T × 55.91058-

1189.64
226.28+T

In[20]:= Plot[T /. FindRoot[eq1, {T, 25}], {ptotal, 1, 10},
AxesLabel → {"P (ATM)", "Bubble point T"}]

Out[20]=
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Or check the boiling point of toluene

In[25]:= bp1 = ptotal ⩵ Psat1[T]

Out[25]= ptotal ⩵
1

19
× 23.95087-

1342.31
219.187+T × 55.95087-

1342.31
219.187+T

In[26]:= Plot[T /. FindRoot[bp1, {T, 25}], {ptotal, 1, 10},
AxesLabel → {"P (ATM)", "Toulene Boiling point T"}]

Out[26]=
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Now back to distillation scaling
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Now back to distillation scaling
We know Raoult’s law is a poor approximations as P increases past a couple of ATM.  However, save 
fixing it for another day...

Temperature range to check...
In[56]:= Plot[T /. FindRoot[bp1, {T, 25}], {ptotal, 1, 25},

AxesLabel → {"P (ATM)", "Toluene Boiling point T"}]

Out[56]=
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Minimum Trays... (Fenske eq.)

In[57]:= Plot[fenske /. {α → Psat2[T] / Psat1[T], xd → .99, xb → .01},
{T, 110, 280}, AxesLabel → {"T-- Celsius", "minimum trays"}]

Out[57]=
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So the minimum trays would vary from ~8 to ~13 at the highest pressure.
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In[58]:= Plot[(fenske /. {α → Psat2[T] / Psat1[T], xd → .99, xb → .01}) /.
FindRoot[bp1, {T, 25}][[1]], {ptotal, 1, 25},

AxesLabel → {"P (ATM)", "minimum trays"}]

Out[58]=
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Minimum reflux...
The minimum reflux directly reflects energy costs.  How does this change?

The simplest relation for minimum reflux is the “Underwood Equation”.   A reference for this is King’s 
book:  “Separation Processes”, McGraw Hill, 1971, but there is probably a 2nd edition and the Under-
wood equation is probably in many texts...

(xD D / (xF F) - α (1 - xD) D / ((1 - xF) F))

α - 1

We pick a saturated liquid feed for simplicity, a 50 - 50 initial mixture and .99 xd and xb

In[29]:= LminslashF = (.99 - α .01) / (α - 1)

Out[29]=
0.99 - 0.01 α

-1 + α

L is the liquid flow in the upper part of the column, LminslashF is L/F, where F is the (liquid) Feed.
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In[35]:= Plot[LminslashF /. α → Psat2[T] / Psat1[T], {T, 110, 280},
AxesLabel → {"Temperature, C", "L/F - top section"}]

Out[35]=
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Perhaps the standard “R” reflux ratio, which is “L” from here divided by D, which is the distillate prod-
uct flow rate would be easier.  F = 2 D for this idealized case... 

In[31]:= minRflux = (.99 - α .01) / (α - 1) 2

Out[31]=
2 (0.99 - 0.01 α)

-1 + α

In[36]:= Plot[minRflux /. α → Psat2[T] / Psat1[T], {T, 110, 280},
AxesLabel → {"Temperature, C", "minimum reflux ratio"}]

Out[36]=
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In[48]:= Plot[(minRflux /. α → Psat2[T] / Psat1[T]) /. FindRoot[bp1, {T, 25}][[1]],
{ptotal, 1, 25}, AxesLabel → {"P (ATM)", "minimum reflux ratio"}]

Out[48]=
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So the reflux ratio and hence the energy requirements will vary by about a factor of 2.   For commodity 
chemical processing, even a few % of energy savings is important!
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